Egg deposition by the phytophagous sawfly Diprion pini L. (Hymenoptera, Diprionidae) is known to induce locally and systemically the emission of volatiles in Scots pine (Pinus sylvestris L.) that attract the egg parasitoid Chrysonotomyia ruforum Krausse (Hymenoptera, Eulophidae). The egg parasitoids kill the eggs and thus prevent damage to the plant from feeding sawfly larvae. The elicitor inducing the pine's response is known to be located in the oviduct secretion which the female sawfly applies to the eggs when inserting them into a slit in the pine needle using the sclerotized ovipositor valves. In this study we have characterized the elicitor. The elicitor was still active when isolated from the oviduct and applied directly to slits made in the pine needles. However, as soon as the oviduct secretion was dissolved in Aqua dest. and stored for 3·h at room temperature or kept frozen at -80°C, its activity was lost. In contrast, oviduct secretion kept its eliciting activity, when dissolved in Ringer solution (pH 7.2) both after storage at room temperature and after freezing. The activity of the elicitor vanished after treatment of the oviduct secretion with proteinase K, which destroyed all proteins. This suggests that the elicitor in the oviduct secretion is a peptide or protein, or a component bound to these. SDS-PAGE revealed a similar, but not identical protein pattern from hemolymph and oviduct secretion. Hemolymph itself has no eliciting effect. The elicitor in the oviduct secretion is only active when transferred to slit pine needles, since its application on undamaged needles did not induce the emission of attractive volatiles.
In 1990-1991, Diprion pini extensively defoliated Scots pine (Pinus sylvestris L.) trees in Lauhanvuori National Park in southwestern Finland. Many trees lost all their foliage, while others had ca. 10 % foliage left after the second year of defoliation. Outside the national park, many nearby stands were also heavily defoliated in 1990, but were sprayed with diflubenzuron (Dimilin ® ) in 1991. This protected the current year needles, corresponding to ca 30 % of full foliage.In spring 1992, pine trees with 0, 10, 30 and 100 % foliage remaining (10 small and 10 large trees in each category) were baited with pine bolts to induce stem attacks by pine shoot beetles. All baited trees were attacked by Tomicus piniperda and some by T. minor. The attacks failed in all these trees except those that were totally defoliated and some of the small trees with 10 % foliage left. Many unbaited trees escaped attack entirely, but only totally defoliated trees were successfully colonized (i. e. produced brood). Attack densities and brood production figures peaked in baited, large and totally defoliated trees. None of the measures (cambial electrical resistance, resin flow, induced lesion length by fungal inoculation, amount of hydrocarbons or phenolic compounds) used to describe tree vigour at the time of attack gave better information than the estimated remaining foliage.We conclude that the risk for beetle-induced mortality following defoliation is a function of remaining needle biomass and beetle pressure. Even at high beetle densities (as was simulated by baiting of trees), trees with 10 % of the foliage remaining were able to defend themselves against attacking pine shoot beetles.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.