Over the last few years, breath analysis for the routine monitoring of metabolic disorders has attracted a considerable amount of scientific interest, especially since breath sampling is a non-invasive technique, totally painless and agreeable to patients. The investigation of human breath samples with various analytical methods has shown a correlation between the concentration patterns of volatile organic compounds (VOCs) and the occurrence of certain diseases. It has been demonstrated that modern analytical instruments allow the determination of many compounds found in human breath both in normal and anomalous concentrations. The composition of exhaled breath in patients with, for example, lung cancer, inflammatory lung disease, hepatic or renal dysfunction and diabetes contains valuable information. Furthermore, the detection and quantification of oxidative stress, and its monitoring during surgery based on composition of exhaled breath, have made considerable progress. This paper gives an overview of the analytical techniques used for sample collection, preconcentration and analysis of human breath composition. The diagnostic potential of different disease-marking substances in human breath for a selection of diseases and the clinical applications of breath analysis are discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.