Water supply pumping stations are among the main energy-consuming elements in the water supply system. The energy optimization of a pumping station can significantly affect the energy consumption of a water utility. This article deals with the energy optimization of water pumping stations. The work assumes several variants of optimization of water supply pumping stations through changes in the water supply system, pressure changes in the pumping station, and modification of the number of pumps. After analyzing the network, conducting field tests, and creating a model of the water supply network, the network was calibrated in order to reproduce the existing water network as accurately as possible. Then, a variant analysis was performed, and the best optimization method for the pumping station was selected. In two variants, there was a decrease in electricity consumption; in three there, was an increase; in one, there was no change. By connecting the DMA zones and modifying the pressure in the pumping station, the energy consumption of the pumping stations was reduced. On this basis, it was found that it is possible to optimize the water pumping station by modifying the pumping station and work related to the network layout.
The water of appropriate quality introduced in the water system changes its chemical properties. Depending on the chemical properties of water and pipe materials, various phenomena may occur, e.g. corrosion, and biofilm structure. The decreasing water demand in existing water systems leads to a reduction in the water flow velocity in the pipes. Accordingly, the age of the water in the system increases. It is especially visible at connections and long sections of the network. The deteriorating water quality along with the elapsing time of its stay in the pipes makes it necessary to perform appropriate measures, e.g. flushing the network. Water supply services usually perform them intuitively. The choice of flushing sites, times, or flow rates is not measured and verified. The age of the water and the efficiency of flushing can be simulated in computer programs. EPANET provides tools for such simulations. The research aimed to check the effects of flushing the network and the age of water in the pressure reduction zone. This is a case that is particularly prone to the increasing age of water. The research has shown that the network flushing sites used so far contribute to the exchange of water in the main water pipes. The simulations showed the need for the additional flush in new places, and in the tested case, the age of the water in the pipes is as much as the intervals between subsequent rinses.
The main challenge in the field of water distribution systems (WDS) is (re)designing the network in order to achieve savings. In many water systems, there are pumping stations designed for much larger flows than what would be observed under normal operating conditions. On the other hand, reducing the diameter of the water pipes has become the main saving method. Designers very often forget to design the network so that it can be used for fire protection purposes. The computer modelling of water networks supports the decision-making process by identifying the optimal compromise between cost and performance (e.g., flow, velocity, pressure). Computer models help in the selection of optimal values of hydraulic pumps, preparation of the pump control method and selection of energy-optimized pumping systems, ensuring the efficiency and pressure of the WDS during normal operation and in fire conditions. The article presents the results of optimization of the pump station in terms of efficiency and pressure in the system, and optimization of pump energy consumption. Computer simulations of the water supply system, measurements of pressure and flow, hydrant flow tests, and model calibration were used in the research.
Delivering water to consumers uses a lot of electricity. In the era of limited fossil fuel resources, we are increasingly looking at the possibilities of using renewable energy sources to power residential buildings or industries. The research aimed to analyze the potential of producing electricity from photovoltaic panels, ensuring electricity supplies for pumping water, and reducing costs. The tests were carried out using the existing photovoltaic (PV) installation with a capacity of 12.3 kW connected to the installation monitoring the production of electricity and monitoring the water-pumping station (WPS). An analysis of the daily electricity production from the PV installation, an analysis of the settlement unit’s demand for water, and an analysis of the costs of pumping water, including the unit cost of pumping 1 m3 of water, were carried out. Studies have shown the possibility of reducing water-pumping costs by more than 77.8% after a PV installation. The tested installation provided 100% of the electricity necessary for WPS for 167 days a year.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.