Small-molecule fluorophores enable the observation of biomolecules in their native context with fluorescence microscopy. Specific labeling via bio-orthogonal tetrazine chemistry combines minimal label size with rapid labeling kinetics. At the same time, fluorogenic tetrazine–dye conjugates exhibit efficient quenching of dyes prior to target binding. However, live-cell compatible long-wavelength fluorophores with strong fluorogenicity have been difficult to realize. Here, we report close proximity tetrazine–dye conjugates with minimal distance between tetrazine and the fluorophore. Two synthetic routes give access to a series of cell-permeable and -impermeable dyes including highly fluorogenic far-red emitting derivatives with electron exchange as the dominant excited-state quenching mechanism. We demonstrate their potential for live-cell imaging in combination with unnatural amino acids, wash-free multicolor and super-resolution STED, and SOFI imaging. These dyes pave the way for advanced fluorescence imaging of biomolecules with minimal label size.
Oligoarenes are regarded as subunits of p-extended carbon nanoforms,s uch as graphene and nanotubes,w ith exceptional technological importance.F used arenes can thus providef undamental insight into the nature of the electronic properties of fused polyaromatic rings and pave the way for the design of extended graphene-like materials.However,large pextended arenes often show lowstability.Herein we report the straightforwardp reparation of linearly fused diphosphahexaarenes containing two six-membered phosphorus heterocycles. They are highly stable towards air,water,and light over months in both solution and the solid state.S ingle-crystal X-ray crystallography confirmed the molecular structure of all derivatives.I nvestigations of their optoelectronic properties revealed that the diphosphahexaarenes exhibit ambipolar redox behavior and high fluorescence quantum yields.Embedding six-membered phosphorus rings into large acenes thus opens up new opportunities for the investigation of polyaromatic systems. Angewandte ChemieCommunications
We introduce a family of bright, rhodamine-based calcium indicators with tuneable affinities and colors. The indicators can be specifically localized to different cellular compartments and are compatible with both fluorescence and bioluminescence readouts through conjugation to HaloTag fusion proteins. Importantly, their increase in fluorescence upon localization enables no-wash live-cell imaging, which greatly facilitates their use in biological assays. Applications as fluorescent indicators in rat hippocampal neurons include the detection of single action potentials and of calcium fluxes in the endoplasmic reticulum. Applications as bioluminescent indicators include the recording of the pharmacological modulation of nuclear calcium in high-throughput compatible assays. The versatility and remarkable ease of use of these indicators make them powerful tools for bioimaging and bioassays.
Oligoarenes are regarded as subunits of π‐extended carbon nanoforms, such as graphene and nanotubes, with exceptional technological importance. Fused arenes can thus provide fundamental insight into the nature of the electronic properties of fused polyaromatic rings and pave the way for the design of extended graphene‐like materials. However, large π‐extended arenes often show low stability. Herein we report the straightforward preparation of linearly fused diphosphahexaarenes containing two six‐membered phosphorus heterocycles. They are highly stable towards air, water, and light over months in both solution and the solid state. Single‐crystal X‐ray crystallography confirmed the molecular structure of all derivatives. Investigations of their optoelectronic properties revealed that the diphosphahexaarenes exhibit ambipolar redox behavior and high fluorescence quantum yields. Embedding six‐membered phosphorus rings into large acenes thus opens up new opportunities for the investigation of polyaromatic systems.
Small-molecule fluorophores enable the observation of biomolecules in their native context with fluorescence microscopy. Specific labelling via bioorthogonal tetrazine chemistry confers minimal label size and rapid labelling kinetics. At the same time, fluorogenic tetrazine-dye conjugates exhibit efficient quenching of dyes prior to target binding. However, live-cell compatible long-wavelength fluorophores with strong fluorogenicity have been difficult to realize. Here, we report close proximity tetrazine-dye conjugates with minimal distance between tetrazine and fluorophore. Two synthetic routes give access to a series of cell permeable and impermeable dyes including highly fluorogenic far-red emitting derivatives with electron exchange as dominant excited state quenching mechanism. We demonstrate their potential for live-cell imaging in combination with unnatural amino acids, wash-free multi-colour and super-resolution STED and SOFI imaging. These dyes pave the way for advanced fluorescence imaging of biomolecules with minimal label size.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.