Abstract. In spite of the fundamental role of the landscape water balance for the Earth's water and energy cycles, monitoring the water balance and its components beyond the point scale is notoriously difficult due to the multitude of flow and storage processes and their spatial heterogeneity. Here, we present the first field deployment of an iGrav superconducting gravimeter (SG) in a minimized enclosure for long-term integrative monitoring of water storage changes. Results of the field SG on a grassland site under wet–temperate climate conditions were compared to data provided by a nearby SG located in the controlled environment of an observatory building. The field system proves to provide gravity time series that are similarly precise as those of the observatory SG. At the same time, the field SG is more sensitive to hydrological variations than the observatory SG. We demonstrate that the gravity variations observed by the field setup are almost independent of the depth below the terrain surface where water storage changes occur (contrary to SGs in buildings), and thus the field SG system directly observes the total water storage change, i.e., the water balance, in its surroundings in an integrative way. We provide a framework to single out the water balance components actual evapotranspiration and lateral subsurface discharge from the gravity time series on annual to daily timescales. With about 99 and 85 % of the gravity signal due to local water storage changes originating within a radius of 4000 and 200 m around the instrument, respectively, this setup paves the road towards gravimetry as a continuous hydrological field-monitoring technique at the landscape scale.
Ground-based gravimetry is increasingly used to study mass distributions and mass transport below the earth surface. The gravity effect of local water storage variations can be large and should be accounted for in the interpretation of these data. However, the effect of hydrologic mass changes in the immediate vicinity of the gravimeter is not considered in standard routines for separating unwanted signal components. This applies in particular to the effect of the buildings in which gravimeters are installed. The building shields the underlying soil from precipitation and evapotranspiration and thus directly affects the water storage dynamics in the near-field of the gravimeter. A combined approach of in situ soil moisture observations and hydrologic modeling was used to quantify the altered water storage variations below observatory buildings. Subsequently, the errors caused by different estimation approaches for this umbrella effect in hydrogravitational computations were assessed. Depending on the site characteristics, the errors range from 4.1 to [Formula: see text] for the intra-annual amplitude when natural soil moisture data are considered for modeling the umbrella effect, and they range from 4.1 to [Formula: see text] when assuming no gravity change within 5 m below the building. These results were condensed to general recommendations, leading to a new simple and broadly applicable method to reduce observed gravity data for building effects, given basic information about the gravimeter location, building dimensions, climatic regime, and soil type of the observation site. This new reduction approach indicates errors of the intra-annual amplitude from 1.9 to [Formula: see text].
Abstract. Cosmic-ray neutron sensing (CRNS) has become an effective method to measure soil moisture at a horizontal scale of hundreds of metres and a depth of decimetres. Recent studies proposed operating CRNS in a network with overlapping footprints in order to cover root-zone water dynamics at the small catchment scale and, at the same time, to represent spatial heterogeneity. In a joint field campaign from September to November 2020 (JFC-2020), five German research institutions deployed 15 CRNS sensors in the 0.4 km2 Wüstebach catchment (Eifel mountains, Germany). The catchment is dominantly forested (but includes a substantial fraction of open vegetation) and features a topographically distinct catchment boundary. In addition to the dense CRNS coverage, the campaign featured a unique combination of additional instruments and techniques: hydro-gravimetry (to detect water storage dynamics also below the root zone); ground-based and, for the first time, airborne CRNS roving; an extensive wireless soil sensor network, supplemented by manual measurements; and six weighable lysimeters. Together with comprehensive data from the long-term local research infrastructure, the published data set (available at https://doi.org/10.23728/b2share.756ca0485800474e9dc7f5949c63b872; Heistermann et al., 2022) will be a valuable asset in various research contexts: to advance the retrieval of landscape water storage from CRNS, wireless soil sensor networks, or hydrogravimetry; to identify scale-specific combinations of sensors and methods to represent soil moisture variability; to improve the understanding and simulation of land–atmosphere exchange as well as hydrological and hydrogeological processes at the hillslope and the catchment scale; and to support the retrieval of soil water content from airborne and spaceborne remote sensing platforms.
Terrestrial gravimetry is increasingly used to monitor mass transport processes in geophysics boosted by the ongoing technological development of instruments. Resolving a particular phenomenon of interest, however, requires a set of gravity corrections of which the uncertainties have not been addressed up to now. In this study, we quantify the time domain uncertainty of tide, global atmospheric, large‐scale hydrological, and nontidal ocean loading corrections. The uncertainty is assessed by comparing the majority of available global models for a suite of sites worldwide. The average uncertainty expressed as root‐mean‐square error equals 5.1 nm/s2, discounting local hydrology or air pressure. The correction‐induced uncertainty of gravity changes over various time periods of interest ranges from 0.6 nm/s2 for hours up to a maximum of 6.7 nm/s2 for 6 months. The corrections are shown to be significant and should be applied for most geophysical applications of terrestrial gravimetry. From a statistical point of view, however, resolving subtle gravity effects in the order of few nanometers per square second is challenged by the uncertainty of the corrections.
Abstract. Heavy Precipitation Events (HPE) are the result of enormous quantities of water vapour being transported to a limited area. HPE rainfall rates and volumes cannot not be fully stored on and below the land surface, often leading to floods with short forecast lead times that may cause damage to humans, properties, and infrastructure. Towards an improved scientific understanding of the entire process chain from HPE formation to flooding at the catchment scale, we propose an elaborated event-triggered observation concept. It combines flexible mobile observing systems out of the fields of meteorology, hydrology and geophysics with stationary networks to capture atmospheric transport processes, heterogeneous precipitation patterns, land surface and subsurface storage processes, and runoff dynamics. As part of the Helmholtz Research Infrastructure MOSES (Modular Observation Solutions for Earth Systems), the added value of our observation strategy is exemplarily shown by its first implementation in the Mueglitz river basin (210 km2), a headwater catchment of the Elbe in the Eastern Ore Mountains with historical and recent extreme flood events. Punctual radiosonde observations combined with continuous microwave radiometer measurements and back trajectory calculations deliver information about the moisture sources, initiation and development of HPE X-Band radar observations calibrated by ground based disdrometers and rain gauges deliver precipitation information with high spatial resolution. Runoff measurements in small sub-catchments complement the discharge times series of the operational network of gauging stations. Closing the catchment water balance at the HPE scale, however, is still challenging. While evapotranspiration is of less importance when studying short term convective HPE, information on the spatial distribution and on temporal variations of soil moisture and total water storage by stationary and roving cosmic ray measurements and by hybrid terrestrial gravimetry offer prospects for improved quantification of the storage term of the water balance equation. Overall, the cross-disciplinary observation strategy presented here opens up new ways towards an integrative and scale-bridging understanding of event dynamics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.