BackgroundAntimicrobial resistance is a serious threat to public health globally. It is a slower-moving pandemic than COVID-19, so we are fast running out of treatment options.PurposeThus, this study was designed to search for an alternative biomaterial with broad-spectrum activity for the treatment of multidrug-resistant (MDR) bacterial and fungal pathogen-related infections.MethodsWe isolated Streptomyces species from soil samples and identified the most active strains with antimicrobial activity. The culture filtrates of active species were purified, and the bioactive metabolite extracts were identified by thin-layer chromatography (TLC), preparative high-performance liquid chromatography (HPLC), nuclear magnetic resonance (NMR) spectroscopy, and gas chromatography-mass spectrometry (GC-MS). The minimum inhibitory concentrations (MICs) of the bioactive metabolites against MDR bacteria and fungi were determined using the broth microdilution method.ResultsPreliminary screening revealed that Streptomyces misakiensis and S. coeruleorubidus exhibited antimicrobial potential. The MIC50 and MIC90 of S. misakiensis antibacterial bioactive metabolite (ursolic acid methyl ester) and antifungal metabolite (tetradecamethylcycloheptasiloxane) against all tested bacteria and fungi were 0.5 μg/ml and 1 μg/mL, respectively, versus S. coeruleorubidus metabolites: thiocarbamic acid, N,N-dimethyl, S-1,3-diphenyl-2-butenyl ester against bacteria (MIC50: 2 μg/ml and MIC90: 4 μg/mL) and fungi (MIC50: 4 μg/ml and MIC90: 8 μg/mL). Ursolic acid methyl ester was active against ciprofloxacin-resistant strains of Streptococcus pyogenes, S. agalactiae, Escherichia coli, Klebsiella pneumoniae, and Salmonella enterica serovars, colistin-resistant Aeromonas hydrophila and K. pneumoniae, and vancomycin-resistant Staphylococcus aureus. Tetradecamethylcycloheptasiloxane was active against azole- and amphotericin B-resistant Candida albicans, Cryptococcus neoformans, C. gattii, Aspergillus flavus, A. niger, and A. fumigatus. Ursolic acid methyl ester was applied in vivo for treating S. aureus septicemia and K. pneumoniae pneumonia models in mice. In the septicemia model, the ursolic acid methyl ester-treated group had a significant 4.00 and 3.98 log CFU/g decrease (P < 0.05) in liver and spleen tissue compared to the infected, untreated control group. Lung tissue in the pneumonia model showed a 2.20 log CFU/g significant decrease in the ursolic acid methyl ester-treated group in comparison to the control group. The haematological and biochemical markers in the ursolic acid methyl ester-treated group did not change in a statistically significant way. Moreover, no abnormalities were found in the histopathology of the liver, kidneys, lungs, and spleen of ursolic acid methyl ester-treated mice in comparison with the control group. ConclusionS. misakiensis metabolite extracts are broad-spectrum antimicrobial biomaterials that can be further investigated for the potential against MDR pathogen infections. Hence, it opens up new horizons for exploring alternative drugs for current and reemerging diseases.
Background Newcastle disease virus (NDV) is a severe disease that affects domestic and wild birds. Controlled antibiotics derived from probiotics have been examined as prospective solutions for preserving seroconversion in NDV-vaccinated fowl. In this study, the secondary metabolite “telomycin” was extracted from Streptomyces coeruleorubidus (S. coeruleorubidus) isolated from Egypt's cultivated soil. The structure of telomycin was determined by the elucidation of spectroscopic analysis, including nuclear magnetic resonance (NMR) and mass spectrometry (MS) spectra, and comparison with the literature. The antiviral activity of the secondary metabolite was tested by checking its effect on NDV hemagglutination activity (HA). Moreover, HA of NDV was tested after inoculation of NDV (control) and a combination of telomycin and NDV in 10- days- specific pathogen-free embryonated chicken eggs (SPF-ECE) daily candling. Histopathological examination was performed for chorioallantoic membranes and liver of SPF-ECE. Results S. coeruleorubidus secondary metabolite “telomycin” showed complete hemagglutination inhibition (HI) activity of NDV strain (MN635617) with log106 infectivity titers (EID50/mL). The HA of NDV strain was 8 log2 and 9 log2 with 0.5% and 0.75% of chicken RBCs, respectively. Preserved structures of chorioallantoic-membranes (CAM) with dilated capillary networks were observed in the treated group inoculated with telomycin and NDV. Histological changes in SPF-ECE liver were examined after inoculation in ova to further characterize the telomycin effect. Telomycin and NDV mixture inoculated group showed preserved cytoarchitecture of hepatocytes with the presence of perivascular foci of lymphocytes. The group that was inoculated with telomycin alone showed normal histology of hepatic acini, central veins, and portal triads. Conclusion S. coeruleorubidus telomycin is a promising bioactive agent that might be a biological weapon against a deadly chicken NDV that costs farmers a lot of money.
In areas with limited water resources, the reuse of treated drainage water for non-potable purposes is increasingly recognised as a valuable and sustainable water resource. Numerous pathogenic bacteria found in drainage water have a detrimental impact on public health. The emergence of antibiotic-resistant bacteria and the current worldwide delay in the production of new antibiotics may make the issue of this microbial water pollution even more challenging. This challenge aided the resumption of phage treatment to address this alarming issue. In this study, strains of Escherichia coli and Pseudomonas aeruginosa and their phages were isolated from drainage and surface water from Bahr El-Baqar and El-Manzala Lake in Damietta governorate, Egypt. Bacterial strains were identified by microscopical and biochemical examinations which were confirmed by 16 S rDNA sequencing. The susceptibility of these bacteria to several antibiotics revealed that most of the isolates had multiple antibiotic resistances (MAR). The calculated MAR index values (> 0.25) categorized study sites as potentially hazardous to health. Lytic bacteriophages against these multidrug-resistant strains of E. coli and P. aeruginosa were isolated and characterized. The isolated phages were found to be pH and heat stable and were all members of the Caudovirales order as recognized by the electron microscope. They infect 88.9% of E. coli strains and 100% of P. aeruginosa strains examined. Under laboratory conditions, the use of a phage cocktail resulted in a considerable reduction in bacterial growth. The removal efficiency (%) for E. coli and P. aeruginosa colonies increased with time and maximized at 24 h revealing a nearly 100% reduction after incubation with the phage mixture. The study candidates new phages for detecting and controlling other bacterial pathogens of public health concern to limit water pollution and maintain adequate hygiene.
Background The Newcastle Disease Virus (NDV) is present throughout the world, and outbreaks in Egypt caused serious economic losses in the poultry industry. Actinobacteria are a phylum of bacteria known for their potential in producing structurally diversified natural products which promising natural compounds used to combat viruses are presented and evaluated. Streptomyces Misakimycin isolated from Egyptian soil, and evaluated for their efficacy in controlling NDV. On the basis of the biochemical characteristics S. Misakimycin metabolites, identified by infrared (IR) and nuclear magnetic resonance (NMR) spectroscopy. Results In this investigation, NDV was found to have been isolated in February from a chicken farm in the Dakahlia Governorate of Egypt by the Animal Health Research Institute in Dokki, Giza. Diethylpthalate (DEP), a secondary metabolite of S. misakimycin, completely inhibited the hemagglutination (HI) activity of the NDV strain (MN635617) at log107 infectivity titers (EID50/mL). With 0.5 percent and 0.75 percent of chicken RBCs, the HA of the NDV strain was 2 log2 and 5 log2, respectively. In the treated group that received DEP and NDV inoculations, chorioallantoic-membranes (CAM) structures were preserved along with dilated capillary networks. Histological changes in SPF-ECE liver were examined after inoculation in ova to further characterize the DEP effect. Diethylpthalate and NDV mixture inoculated group showed preserved cytoarchitecture of hepatocytes with the presence of perivascular foci of lymphocytes. The group that was inoculated with telomycin alone showed normal histology of hepatic acini, central veins, and portal triads. Conclusion A potentially bioactive substance called diethylpthalate has the potential to be a biological weapon against a fatal chicken NDV that quickly increase cost losses for farmers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.