The aim of this paper is to introduce new concepts ofα-η-complete metric space andα-η-continuous function and establish fixed point results for modifiedα-η-ψ-rational contraction mappings inα-η-complete metric spaces. As an application, we derive some Suzuki type fixed point theorems and new fixed point theorems forψ-graphic-rational contractions. Moreover, some examples and an application to integral equations are given here to illustrate the usability of the obtained results.
We first introduce certain new concepts of --proximal admissible and ---rational proximal contractions of the first and second kinds. Then we establish certain best proximity point theorems for such rational proximal contractions in metric spaces. As an application, we deduce best proximity and fixed point results in partially ordered metric spaces. The presented results generalize and improve various known results from best proximity point theory. Several interesting consequences of our obtained results are presented in the form of new fixed point theorems which contain famous Banach's contraction principle and some of its generalizations as special cases. Moreover, some examples are given to illustrate the usability of the obtained results.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.