The human mesenchymal stem cell (hMSC) secretome has pleiotropic effects which underpin their therapeutic potential. hMSC serum-free conditioned media (SFCM) has been determined to contain a variety of cytokines with roles in regeneration and suppression of inflammation. Physiological oxygen (physoxia) has been demonstrated to impact upon a number of facets of hMSC biology and we hypothesized that the secretome would be similarly modified. We tested a range of oxygen conditions; 21% O2 (air oxygen (AO)), 2% O2 (intermittent hypoxia (IH)) and 2% O2 Workstation (physoxia (P)) to evaluate their effect on hMSC secretome profiles. Total protein content of secretome was upregulated in IH and P (>3 fold vs AO) and IH (>1 fold vs P). Focused cytokine profiling indicated global upregulation in IH of all 31 biomolecules tested in comparison to AO and P with basic-nerve growth factor (bNGF) and granulocyte colony-stimulating factor (GCSF) (>3 fold vs AO) and bNGF and Rantes (>3 fold vs P) of note. Similarly, upregulation of interferon gamma-induced protein 10 (IP10) was noted in P (>3 fold vs AO). Interleukin-2 (IL2) and Rantes (in AO and P) and adiponectin, IL17a, and epidermal growth factor (EGF) (in AO only) were entirely absent or below detection limits. Quantitative analysis validated the pattern of IH-induced upregulation in vascular endothelial growth factor (VEGF), placental growth factor-1 (PIGF1), Tumor necrosis factor alpha (TNFa), IL2, IL4, and IL10 when compared to AO and P. In summary, modulation of environmental oxygen alters both secretome concentration and composition. This consideration will likely impact on delivering improved mechanistic understanding and potency effects of hMSC-based therapeutics.
The Human Mesenchymal Stem Cell (hMSC) secretome has pleiotropic effects underpinning its therapeutic potential. hMSC serum-free conditioned media (SFCM) contains a variety of cytokines, with previous studies linking a changed secretome composition to physoxia. The Jurkat T cell model allowed the efficacy of SFCM vs. serum-free media (SFM) in the suppression of immunological aspects, including proliferation and polarisation, to be explored. Cell growth in SFM was higher [(21% O2 = 5.3 × 105 ± 1.8 × 104 cells/mL) and (2% O2 = 5.1 × 105 ± 3.0 × 104 cells/mL)], compared to SFCM [(21% O2 = 2.4 × 105 ± 2.5 × 104 cells/mL) and (2% O2 = 2.2 × 105 ± 5.8 × 103 cells/mL)]. SFM supported IL-2 release following activation [(21% O2 = 5305 ± 211 pg/mL) and (2% O2 = 5347 ± 327 pg/mL)] whereas SFCM suppressed IL-2 secretion [(21% O2 = 2461 ± 178 pg/mL) and (2% O2 = 1625 ± 159 pg/mL)]. Anti-inflammatory cytokines, namely IL-4, IL-10, and IL-13, which we previously confirmed as components of hMSC SFCM, were tested. IL-10 neutralisation in SFCM restored proliferation in both oxygen environments (SFM/SFCM+antiIL−10 ~1-fold increase). Conversely, IL-4/IL-13 neutralisation showed no proliferation restoration [(SFM/SFM+antiIL−4 ~2-fold decrease), and (SFM/SFCM+antiIL−13 ~2-fold decrease)]. Present findings indicate IL-10 played an immunosuppressive role by reducing IL-2 secretion. Identification of immunosuppressive components of the hMSC secretome and a mechanistic understanding of their action allow for the advancement and refinement of potential future cell-free therapies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.