In vivo imaging of brain β-amyloid, a hallmark of Alzheimer disease, may assist in the clinical assessment of suspected Alzheimer disease. OBJECTIVE To determine the sensitivity and specificity of positron emission tomography imaging with flutemetamol injection labeled with radioactive fluorine 18 to detect β-amyloid in the brain using neuropathologically determined neuritic plaque levels as the standard of truth. DESIGN, SETTING, AND PARTICIPANTS Open-label multicenter imaging study that took place at dementia clinics, memory centers, and hospice centers in the United States and England from June 22, 2010, to November 23, 2011. Participants included terminally ill patients who were 55 years or older with a life expectancy of less than 1 year. INTERVENTIONS Flutemetamol injection labeled with radioactive fluorine 18 (Vizamyl; GE Healthcare) administration followed by positron emission tomography imaging and subsequent brain donation. MAIN OUTCOMES AND MEASURES Sensitivity and specificity of flutemetamol injection labeled with radioactive fluorine 18 positron emission tomography imaging for brain β-amyloid. Images were reviewed without and with computed tomography scans and classified as positive or negative for β-amyloid by 5 readers who were blind to patient information. In patients who died, neuropathologically determined neuritic plaque levels were used to confirm scan interpretations and determine sensitivity and specificity. RESULTS Of 176 patients with evaluable images, 68 patients (38%) died during the study, were autopsied, and had neuritic plaque levels determined; 25 brains (37%) were β-amyloid negative; and 43 brains (63%) were β-amyloid positive. Imaging was performed a mean of 3.5 months (range, 0 to 13 months) before death. Sensitivity without computed tomography was 81% to 93% (median, 88%). Median specificity was 88%, with 4 of 5 of the readers having specificity greater than 80%. When scans were interpreted with computed tomography images, sensitivity and specificity improved for most readers but the differences were not significant. The area under the receiver operating curve was 0.90. There were no clinically meaningful findings in safety parameters. CONCLUSIONS AND RELEVANCE This study showed that flutemetamol injection labeled with radioactive fluorine 18 was safe and had high sensitivity and specificity in an end-of-life population. In vivo detection of brain β-amyloid plaque density may increase diagnostic accuracy in cognitively impaired patients.
IntroductionPerformance of the amyloid tracer [18F]flutemetamol was evaluated against three pathology standard of truth (SoT) measures including neuritic plaques (CERAD “original” and “modified” and the amyloid component of the 2012 NIA-AA guidelines).MethodsAfter [18F]flutemetamol imaging, 106 end-of-life patients who died underwent postmortem brain examination for amyloid plaque load. Blinded positron emission tomography scan interpretations by five independent electronically trained readers were compared with pathology measures.ResultsBy SoT, sensitivity and specificity of majority image interpretations were, respectively, 91.9% and 87.5% with “original CERAD,” 90.8% and 90.0% with “modified CERAD,” and 85.7% and 100% with the 2012 NIA-AA criteria.DiscussionThe high accuracy of either CERAD criteria suggests that [18F]flutemetamol predominantly reflects neuritic amyloid plaque density. However, the use of CERAD criteria as the SoT can result in some false-positive results because of the presence of diffuse plaques, which are accounted for when the positron emission tomography read is compared with the 2012 NIA-AA criteria.
Background Although Alzheimer’s disease affects around 800,000 people in the UK and costs almost £23 billion per year, currently licenced treatments only offer modest benefit at best. Seizures, which are more common in patients with Alzheimer’s disease than age matched controls, may contribute to the loss of nerve cells and abnormal brain discharges can disrupt cognition. This aberrant electrical activity may therefore present potentially important drug targets. The anti-seizure medication levetiracetam can reduce abnormal cortical discharges and reverse memory deficits in a mouse model of Alzheimer’s disease. Levetiracetam has also been shown to improve memory difficulties in patients with mild cognitive impairment, a precursor to Alzheimer’s disease. Clinical use of levetiracetam is well-established in treatment of epilepsy and extensive safety data are available. Levetiracetam thus has the potential to provide safe and efficacious treatment to help with memory difficulties in Alzheimer’s disease. Methods The proposed project is a proof of concept study to test whether levetiracetam can help cognitive function in people with dementia. We plan to recruit thirty patients with mild to moderate Alzheimer’s disease with no history of previous seizures or other significant co-morbidity. Participants will be allocated to a double-blind placebo-controlled crossover trial that tests levetiracetam against placebo. Standardised scales to assess cognition and a computer-based touchscreen test that we have developed to better detect subtle improvements in hippocampal function will be used to measure changes in memory. All participants will have an electroencephalogram (EEG) at baseline. The primary outcome measure is a change in the computer-based touchscreen cognitive task while secondary outcomes include the effect of levetiracetam on mood, quality of life and modelling of the EEG, including time series measures and feature-based analysis to see whether the effect of levetiracetam can be predicted. The effect of levetiracetam and placebo will be compared within a given patient using the paired t-test and the analysis of covariance adjusting for baseline values. Discussion This is the first study to evaluate if an anti-seizure medication can offer meaningful benefit to patients with Alzheimer’s disease. If this study demonstrates at least stabilisation of memory function and/or good tolerability, the next step will be to rapidly progress to a larger study to establish whether levetiracetam may be a useful and cost-effective treatment for patients with Alzheimer’s disease. Trial registration ClinicalTrials.govNCT03489044. Registered on April 5, 2018.
Background: Although Alzheimer’s disease affects around 800,000 people in the UK and costs almost £23 billion per year, currently licensed treatments only offer modest benefit at best. Seizures, which are more common in patients with Alzheimer’s disease than age matched controls, may contribute to the loss of nerve cells and abnormal brain discharges can disrupt cognition. This aberrant electrical activity may therefore present potentially important drug targets.The anti-epileptic drug levetiracetam can reduce abnormal cortical discharges and reverse memory deficits in a mouse model of Alzheimer’s disease. Levetiracetam has also been shown to improve memory difficulties in patients with mild cognitive impairment, a pre-cursor to Alzheimer’s disease. Clinical use of levetiracetam is well-established in treatment of epilepsy and extensive safety data are available. Levetiracetam thus has the potential to provide safe and efficacious treatment to help with memory difficulties in Alzheimer’s disease.Methods:The proposed project is a proof of concept study to test whether levetiracetam can help cognitive function in people with dementia. We plan to recruit thirty patients with mild to moderate Alzheimer’s disease with no history of previous seizures or other significant co-morbidity. Participants will be allocated to a double-blind placebo controlled crossover trial that tests levetiracetam against placebo. . Standardised scales to assess cognition and a computer-based touch screen test that we have developed to better detect subtle improvements in hippocampal function will be used to measure changes in memory. All participants will have an electroencephalogram (EEG) at baseline. The primary outcome measure is a change in the computer-based touchscreen cognitive task while secondary outcomes include the effect of levetiracetam on mood, quality of life and modelling of the EEG, including time series measures and feature based analysis to see whether effect of levetiracetam can be predicted. The effect of levetiracetam and placebo will be compared within a given patient using the paired t-test and the analysis of covariance adjusting for baseline values Discussion:This is the first study to evaluate if an anti-epileptic medication can offer meaningful benefit to patients with Alzheimer's disease. If this study demonstrates at least stabilisation of memory function and/or good tolerability, the next step will be to rapidly progress to a larger study to establish whether levetiracetam may be a useful and cost-effective treatment for patients with Alzheimer's disease.Trial registration: ClinicalTrials.gov Identifier: NCT03489044Registered: 5th April 2018URL: https://clinicaltrials.gov/ct2/show/NCT03489044
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.