Complex dynamical networks consisting of a large number of interacting units are ubiquitous in nature and society. There are situations where the interactions in a network of interest are unknown and one wishes to reconstruct the full topology of the network through measured time series. We present a general method based on compressive sensing. In particular, by using power series expansions to arbitrary order, we demonstrate that the network-reconstruction problem can be casted into the form X = G • a, where the vector X and matrix G are determined by the time series and a is a sparse vector to be estimated that contains all nonzero power series coefficients in the mathematical functions of all existing couplings among the nodes. Since a is sparse, it can be solved by the standard L1-norm technique in compressive sensing. The main advantages of our approach include sparse data requirement and broad applicability to a variety of complex networked dynamical systems, and these are illustrated by concrete examples of model and real-world complex networks.
Recognizing people by their ear has recently received significant attention in the literature. Several reasons account for this trend: first, ear recognition does not suffer from some problems associated with other noncontact biometrics, such as face recognition; second, it is the most promising candidate for combination with the face in the context of multi-pose face recognition; and third, the ear can be used for human recognition in surveillance videos where the face may be occluded completely or in part. Further, the ear appears to degrade little with age. Even though current ear detection and recognition systems have reached a certain level of maturity, their success is limited to controlled indoor conditions. In addition to variation in illumination, other open research problems include hair occlusion, earprint forensics, ear symmetry, ear classification, and ear individuality.This article provides a detailed survey of research conducted in ear detection and recognition. It provides an up-to-date review of the existing literature revealing the current state-of-art for not only those who are working in this area but also for those who might exploit this new approach. Furthermore, it offers insights into some unsolved ear recognition problems as well as ear databases available for researchers.
The performance of an automated face recognition system can be significantly influenced by face image quality. Designing effective image quality index is necessary in order to provide real-time feedback for reducing the number of poor quality face images acquired during enrollment and authentication, thereby improving matching performance. In this study, the authors first evaluate techniques that can measure image quality factors such as contrast, brightness, sharpness, focus and illumination in the context of face recognition. Second, they determine whether using a combination of techniques for measuring each quality factor is more beneficial, in terms of face recognition performance, than using a single independent technique. Third, they propose a new face image quality index (FQI) that combines multiple quality measures, and classifies a face image based on this index. In the author's studies, they evaluate the benefit of using FQI as an alternative index to independent measures. Finally, they conduct statistical significance Z-tests that demonstrate the advantages of the proposed FQI in face recognition applications.
It has been claimed that Lyapunov exponents computed from electroencephalogram or electrocorticogram (ECoG) time series are useful for early prediction of epileptic seizures. We show, by utilizing a paradigmatic chaotic system, that there are two major obstacles that can fundamentally hinder the predictive power of Lyapunov exponents computed from time series: finite-time statistical fluctuations and noise. A case study with an ECoG signal recorded from a patient with epilepsy is presented.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.