Abstract-A new multimodal biometric database designed and acquired within the framework of the European BioSecure Network of Excellence is presented. It is comprised of more than 600 individuals acquired simultaneously in three scenarios: 1) over the Internet, 2) in an office environment with desktop PC, and 3) in indoor/outdoor environments with mobile portable hardware. The three scenarios include a common part of audio/video data. Also, signature and fingerprint data have been acquired both with desktop PC and mobile portable hardware. Additionally, hand and iris data were acquired in the second scenario using desktop PC. Acquisition has been conducted by 11 European institutions. Additional features of the BioSecure Multimodal Database (BMDB) are: two acquisition sessions, several sensors in certain modalities, balanced gender and age distributions, multimodal realistic scenarios with simple and quick tasks per modality, cross-European diversity, availability of demographic data, and compatibility with other multimodal databases. The novel acquisition conditions of the BMDB allow us to perform new challenging research and evaluation of either monomodal or multimodal biometric systems, as in the recent BioSecure Multimodal Evaluation campaign. A description of this campaign including baseline results of individual modalities from the new database is also given. The database is expected to be available for research purposes through the BioSecure Association during 2008.
Esta es la versión de autor del artículo publicado en: This is an author produced version of a paper published in:IEEE transactions on information forensics and security 4.4, (2009) Abstract-Automatically verifying the identity of a person by means of biometrics (e.g., face and fingerprint) is an important application in our day-to-day activities such as accessing banking services and security control in airports. To increase the system reliability, several biometric devices are often used. Such a combined system is known as a multimodal biometric system. This paper reports a benchmarking study carried out within the framework the Biosecure DS2 (Access Control) evaluation campaign organized by the University of Surrey, involving face, fingerprint and iris biometrics for person authentication, targeting the application of physical access control in a mediumsize establishment with some 500 persons. While multimodal biometrics is a well investigated subject in the literature, there exists no benchmark for a fusion algorithm comparison. Working towards this goal, we designed two sets of experiments: qualitydependent and cost-sensitive evaluation. The quality-dependent evaluation aims at assessing how well fusion algorithms can perform under changing quality of raw biometric images principally due to change of devices. The cost-sensitive evaluation, on the other hand, investigates how well a fusion algorithm can perform given restricted computation and in the presence of software and hardware failures, resulting in errors such as failure to acquire and failure to match. Since multiple capturing devices are available, a fusion algorithm should be able to handle this non-ideal but nevertheless realistic scenario. In both evaluations, each fusion algorithm is provided with scores from each biometric comparison subsystem as well as the quality measures of both the template and the query data. The response to the call of the evaluation campaign proved very encouraging, with the submission of 22 fusion systems. To the best of our knowledge, this campaign is the first attempt to benchmark quality-based multimodal fusion algorithms. In the presence of changing image quality which may be due to a change of acquisition devices and/or device capturing configurations, we observe that the top performing fusion algorithms are those that exploit automatically derived quality measurements. Our evaluation also suggests that while using all the available biometric sensors can definitely increase the fusion performance, this comes at the expense of increased cost in terms of acquisition time, computation time, the physical cost of hardware and its maintenance cost. As demonstrated in our experiments, a promising solution which minimizes the composite cost is sequential fusion, where a fusion algorithm sequentially uses match scores until a desired confidence is reached, or until all the match scores are exhausted, before outputting the final combined score. Index Terms-multimodal biometric authentication, biometric database, quality-...
The performance of an automated face recognition system can be significantly influenced by face image quality. Designing effective image quality index is necessary in order to provide real-time feedback for reducing the number of poor quality face images acquired during enrollment and authentication, thereby improving matching performance. In this study, the authors first evaluate techniques that can measure image quality factors such as contrast, brightness, sharpness, focus and illumination in the context of face recognition. Second, they determine whether using a combination of techniques for measuring each quality factor is more beneficial, in terms of face recognition performance, than using a single independent technique. Third, they propose a new face image quality index (FQI) that combines multiple quality measures, and classifies a face image based on this index. In the author's studies, they evaluate the benefit of using FQI as an alternative index to independent measures. Finally, they conduct statistical significance Z-tests that demonstrate the advantages of the proposed FQI in face recognition applications.
Abstract-The problem of face verification across the short wave infrared spectrum (SWIR) is studied in order to illustrate the advantages and limitations of SWIR face verification. The contributions of this work are two-fold. First, a database of 50 subjects is assembled and used to illustrate the challenges associated with the problem. Second, a set of experiments is performed in order to demonstrate the possibility of SWIR cross-spectral matching. Experiments also show that images captured under different SWIR wavelengths can be matched to visible images with promising results. The role of multispectral fusion in improving recognition performance in SWIR images is finally illustrated. To the best of our knowledge, this is the first time cross-spectral SWIR face recognition is being investigated in the open literature.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.