Responses of 21 women and 29 men (29-56 yr of age) to -50 Torr lower body negative pressure (LBNP) were examined for differences due to sex or age. Responses to LBNP were normal, including fluid shift from thorax to lower body, increased heart rate and peripheral resistance, and decreased stroke volume, cardiac output, and Heather index of ventricular function. Mean arterial blood pressure did not change. Comparison of responses of the women to responses of an age-matched subset of the men (n = 26) indicated the men had larger relative increases in calf circumference and greater increases in peripheral resistance during LBNP than the women, whereas the women experienced greater increases in thoracic impedance and heart rate. Analyses of responses of the 29 men for age-related differences indicated older subjects had greater increases in peripheral resistance and less heart rate elevation in response to LBNP (P less than 0.05 for all differences, except sex-related heart rate difference, where P less than 0.10). Based on these data and the data of other investigators, we hypothesize the age-related circulatory differences in response to LBNP are due to a reduction in vagal response and a switch to predominant sympathetic nervous system influence in older men. We cannot exclude the possibility that diminished responsiveness in the afferent arm of the baroreceptor reflex also plays a role in the attenuated heart rate response of older men to LBNP.
The cardiovascular responses to postural change, and how they are affected by aging, are inadequately described in women. Therefore, the authors examined the influence of age and sex on the responses of blood pressure, cardiac output, heart rate, and other variables to change in posture. Measurements were made after 10 minutes each in the supine, seated, and standing positions in 22 men and 25 women who ranged in age from 21 to 59 years. Several variables differed, both by sex and by age, when subjects were supine. On rising, subjects' diastolic and mean arterial pressures, heart rate, total peripheral resistance (TPR), and thoracic impedance increased; cardiac output, stroke volume, and mean stroke ejection rate decreased; and changes in all variables, except heart rate, were greater from supine to sitting than sitting to standing. The increase in heart rate was greater in the younger subjects, and increases in TPR and thoracic impedance were greater in the older subjects. Stroke volume decreased less, and TPR and thoracic impedance increased more, in the women than in the men. The increase in TPR was particularly pronounced in the older women. These studies show that the cardiovascular responses to standing differ, in some respects, between the sexes and with age. The authors suggest that the sex differences are, in part, related to greater decrease of thoracic blood volume with standing in women than in men, and that the age differences result, in part, from decreased responsiveness of the high-pressure baroreceptor system.
Spaceflight induces a cephalad redistribution of fluid volume and blood flow within the human body, and space motion sickness, which is a problem during the first few days of spaceflight, could be related to these changes in fluid status and in blood flow of the cerebrum and vestibular system. To evaluate possible changes in cerebral blood flow during simulated weightlessness, we measured blood velocity in the middle cerebral artery (MCA) along with retinal vascular diameters, intraocular pressure, impedance cardiography, and sphygmomanometry on nine men (26.2 +/- 6.6 yr) morning and evening for 2 days during continuous 10 degrees head-down tilt (HDT). When subjects went from seated to head-down bed rest, their heart rate and retinal diameters decreased, and intraocular pressures increased. After 48 h of HDT, blood flow velocity in the MCA was decreased and thoracic impedance was increased, indicating less fluid in the thorax. Percent changes in blood flow velocities in the MCA after 48 h of HDT were inversely correlated with percent changes in retinal vascular diameters. Blood flow velocities in the MCA were inversely correlated (intersubject) with arterial pressures and retinal vascular diameters. Heart rate, stroke volume, cardiac output, systolic arterial pressure, and at times pulse pressure and blood flow velocities in the MCA were greater in the evening. Total peripheral resistance was higher in the morning. Although cerebral blood velocity is reduced after subjects are head down for 2 days, the inverse relationship with retinal vessel diameters, which have control analogous to that of cerebral vessels, indicates cerebral blood flow is not reduced.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.