Bolidomonas is a genus of picoplanktonic flagellated algae that is closely related to diatoms. Triparma laevis, a species belonging to the Parmales, which are small cells with a siliceous covering, has been shown to form a monophyletic group with Bolidomonas. We isolated several novel strains of Bolidophyceae that have permitted further exploration of the diversity of this group using nuclear, plastidial and mitochondrial genes. The resulting phylogenetic data led us to formally emend the taxonomy of this group to include the Parmales within the Bolidophyceae, to combine Bolidomonas within Triparma and to define a novel species, Triparma eleuthera sp. nov. The global distribution of Bolidophyceae was then assessed using environmental sequences available in public databases, as well as a large 18S rRNA V9 metabarcode data set from the Tara Oceans expedition. Bolidophyceans appear ubiquitous throughout the sampled oceans but always constitute a minor component of the phytoplankton community, corresponding to at most ~4% of the metabarcodes from photosynthetic groups (excluding dinoflagellates). They are ~10 times more abundant in the small size fraction (0.8–5 μm) than in larger size fractions. T. eleuthera sp. nov. constitutes the most abundant and most widespread operational taxonomic unit (OTU) followed by T. pacifica, T. mediterranea and the T. laevis clade. The T. mediterranea OTU is characteristic of Mediterranean Sea surface waters and the T. laevis clade OTU is most prevalent in colder waters, in particular off Antarctica.
Prasinophytes clade VII is a group of pico/nano-planktonic green algae (division Chlorophyta) for which numerous ribosomal RNA (rRNA) sequences have been retrieved from the marine environment in the last 15 years. A large number of strains have also been isolated but have not yet received a formal taxonomic description. A phylogenetic analysis of available strains using both the nuclear 18S and plastidial 16S rRNA genes demonstrates that this group composes at least 10 different clades: A1-A7 and B1-B3. Analysis of sequences from the variable V9 region of the 18S rRNA gene collected during the Tara Oceans expedition and in the frame of the Ocean Sampling Day consortium reveal that clade VII is the dominant Chlorophyta group in oceanic waters, replacing Mamiellophyceae, which have this role in coastal waters. At some location, prasinophytes clade VII can even be the dominant photosynthetic eukaryote representing up to 80% of photosynthetic metabarcodes overall. B1 and A4 are the overall dominant clades and different clades seem to occupy distinct niches, for example, A6 is dominant in surface Mediterranean Sea waters, whereas A4 extend to high temperate latitudes. Our work demonstrates that prasinophytes clade VII constitute a highly diversified group, which is a key component of phytoplankton in open oceanic waters but has been neglected in the conceptualization of marine microbial diversity and carbon cycle.
We tested three hypotheses used to explain the increase in young-of-the-year (YOY) Atlantic salmon ( Salmo salar ) density with habitat complexity: the territory-size, predator-refuge, and foraging-benefits hypotheses. We manipulated habitat complexity in three different treatments (boulder-removed, control, and boulder-added) at eight sites in Catamaran Brook and the Little Southwest Miramichi River, New Brunswick. The density of juvenile salmon was two times higher in the boulder-added treatment than in the other treatments. Our data were consistent with the territory-size hypothesis; visual isolation was highest and territory size was smallest in the boulder-added treatment, and salmon selected microhabitats to maximize their field of view. Our results showed partial support for the predator-refuge hypothesis; salmon in the boulder-added sites were closer to cover and showed a reduced reaction distance to a novel stimulus, but did not preferentially select microhabitats closer to cover. We found no direct support for the foraging-benefits hypothesis; however, there is indirect evidence that boulders may improve the growth potential of instream habitat. Our results suggest that YOY Atlantic salmon may be attracted to complex environments for the increased cover and that the decreased visibility of these sites causes a reduction in territory size, allowing a higher density of fish.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.