During transcription initiation, RNA polymerase (RNAP) binds and unwinds promoter DNA to form an RNAP-promoter open complex. We have determined crystal structures at 2.9 and 3.0 Å resolution of functional transcription initiation complexes comprising Thermus thermophilus RNA polymerase, σA, and a promoter DNA fragment corresponding to the transcription bubble and downstream dsDNA of the RNAP-promoter open complex. The structures show that σ recognizes the -10 element and discriminator element through interactions that include the unstacking and insertion into pockets of three DNA bases, and that RNAP recognizes the −4/+2 region through interactions that include the unstacking and insertion into a pocket of the +2 base. The structures further show that interactions between σ and template-strand ssDNA pre-organize template-strand ssDNA to engage the RNAP active center.
Activation of Ras proteins underlies functional decisions in diverse cell types. Two molecules, RasGRP and SOS, catalyze Ras activation in lymphocytes. Binding of active Ras to SOS′ allosteric pocket markedly increases SOS′ activity establishing a positive feedback loop for SOS-mediated Ras activation. Integrating in silico and in vitro studies, we demonstrate that digital signaling in lymphocytes (cells are “on” or “off”) is predicated upon feedback regulation of SOS. SOS′ feedback loop leads to hysteresis in the dose-response curve, which can enable a capacity to sustain Ras activation as stimuli are withdrawn and exhibit “memory” of past encounters with antigen. Ras activation via RasGRP alone is analog (graded increase in amplitude with stimulus). We describe how complementary analog (RasGRP) and digital (SOS) pathways act on Ras to efficiently convert analog input to digital output. Numerous predictions regarding the impact of our findings on lymphocyte function and development are noted.
Inhibition of bacterial RNA polymerase (RNAP) is an established strategy for antituberculosis therapy and broad-spectrum antibacterial therapy. Crystal structures of RNAP-inhibitor complexes are available for four classes of antibiotics: rifamycins, sorangicin, streptolydigin, and myxopyronin. The structures define three different targets, and three different mechanisms, for inhibition of bacterial RNAP: (1) rifamycins and sorangicin bind near the RNAP active center and block extension of RNA products; (2) streptolydigin interacts with a target that overlaps the RNAP active center and inhibits conformational cycling of the RNAP active center; and (3) myxopyronin interacts with a target remote from the RNAP active center and functions by interfering with opening of the RNAP active-center cleft to permit entry and unwinding of DNA and/or by interfering with interactions between RNAP and the DNA template strand. The structures enable construction of homology models of pathogen RNAP-antibiotic complexes, enable in silico screening for new antibacterial agents, and enable rational design of improved antibacterial agents. Bacterial RNAP as an antibiotic targetBacterial RNA polymerase (RNAP) is a proven target for broad-spectrum antibacterial therapy and for antituberculosis therapy [1][2][3]. RNAP is a suitable target for three reasons: (1) RNAP is an essential enzyme (permits efficacy); (2) bacterial RNAP-subunit sequences are highly conserved (permits broad-spectrum activity); (3) bacterial RNAP sequences and eukaryotic RNAP sequences are less highly conserved (permits therapeutic selectivity).The rifamycin antibacterial agents-rifampin (also known as rifampicin), rifapentine, and rifabutin-function by binding to and inhibiting bacterial RNAP [1][2][3]. The rifamycins are in clinical use in treatment of Gram-positive and Gram-negative bacterial infections, are first-line antituberculosis agents, and are among the few antituberculosis agents that can kill nonreplicating tuberculosis bacteria.For all major bacterial pathogens, including the tuberculosis pathogen, strains resistant to rifamycins have arisen [1][2][3]. Resistance to rifamycins involves substitution of residues within © 2009 Elsevier Ltd. All rights reserved. * To whom correspondence should be addressed: ebright@mbcl.rutgers.edu, arnold@cabm.rutgers.edu.Publisher's Disclaimer: This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final citable form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain. NIH Public Access RNAP-rifamycin complexes: "Rif/Sor target"Rifamycins are macrocyclic antibacterial agents of the ansamycin family [4,5]. They comprise a naphthyl moiety, an ansa ring, and, optionally, side ...
Using a combination of genetic, biochemical, and structural approaches, we show that the cyclic-peptide antibiotic GE23077 (GE) binds directly to the bacterial RNA polymerase (RNAP) active-center ‘i’ and ‘i+1’ nucleotide binding sites, preventing the binding of initiating nucleotides, and thereby preventing transcription initiation. The target-based resistance spectrum for GE is unusually small, reflecting the fact that the GE binding site on RNAP includes residues of the RNAP active center that cannot be substituted without loss of RNAP activity. The GE binding site on RNAP is different from the rifamycin binding site. Accordingly, GE and rifamycins do not exhibit cross-resistance, and GE and a rifamycin can bind simultaneously to RNAP. The GE binding site on RNAP is immediately adjacent to the rifamycin binding site. Accordingly, covalent linkage of GE to a rifamycin provides a bipartite inhibitor having very high potency and very low susceptibility to target-based resistance.DOI: http://dx.doi.org/10.7554/eLife.02450.001
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.