To date, there has been little research examining how elevated ambient temperatures exert an additional effect on the acute immune response to endurance exercise. Seven endurance-trained, non-heat-acclimated men [mean (95% confidence interval): 29.7 (25.9-33.5) years, .VO(2max) 66.3 (61.3-71.3) ml.kg(-1).min(-1)] performed two 60-min treadmill runs (75% .VO(2max)) in two different environments (EX1: 18 degrees C/50% room temperature/relative humidity and EX2: 28 degrees C/50% room temperature/relative humidity) with a 7-day interval between the runs. Blood samples were drawn at rest and 0, 0.5, 3, 24, and 48 h after exercise. Compared to EX1, exercise-induced increases in core temperature, sweating rate, heart rate, plasma norepinephrine, cortisol, human growth hormone, and neutrophil and monocyte counts were significantly (5% level) more pronounced after EX2. In contrast, responses of plasma epinephrine, myeloperoxidase, interleukin (IL)-6 as well as lymphocyte counts were similar in EX1 and EX2. Plasma concentrations of IL-8 and C-reactive protein were affected by neither exercise nor by additional heat exposure. Our results suggest that the additional impact of elevated ambient temperatures on stress responses to endurance exercise in trained subjects seems to affect primarily the cardiocirculatory and hormonal systems, and resulting changes in neutrophil and monocyte cell-trafficking. In contrast, heat stress does not seem to exert large additional effects on the acute immune response to endurance exercise as performed in the present study.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.