The goal of this study was to develop a simple method to improve DNA recovery from challenging bone samples. To this end, an optimized procedure was developed that combined the demineralization and DNA extraction into a single step, followed by DNA purification using an automated silica-coated paramagnetic bead procedure. This method replaced a previous silica-membrane-based procedure, which was able to recover sufficient DNA to obtain full autosomal and Y chromosome STR profiles from greater than 90% of the samples, including samples greater than 20 years old. The development process began with the evaluation of buffer and demineralization systems to determine the best reagent combination. During the developmental process, we observed that the addition of EDTA and DTT affected silica-based DNA purification methods by raising the pH of the digest buffer. The protocols with buffer ATL, PK, EDTA, and DTT followed by lowering the pH with sodium acetate just before purification resulted in the best yields. The method reduced the extraction volume from 10 to 1.5 ml and used commercially available reagents already being utilized in forensic DNA casework. Because of the simplicity and small volume needed for the procedure, many steps where contamination could be introduced have been eliminated or minimized. This study demonstrated a new method of recovering DNA from bone samples capable of extracting trace quantities of DNA, removing potential inhibitors, and minimizing the potential for exogenous DNA contamination.
Electrokinetic injection (EI) is the primary method used in forensic laboratories to load amplified PCR product in capillary electrophoresis for short tandem repeat (STR) fragment separation. Because all samples subjected to capillary electrophoresis use internal lane standard (ILS), this study investigated the consequence of varying the volume of ILS and its effects on allele peak heights and number of alleles detected. Results demonstrated that when the volume of ILS is reduced, the average peak height and number of alleles increased, thereby increasing the sensitivity of the detection method. Sizing anomalies were observed; however, they did not adversely affect accuracy and precision. The method developed in this study offers a simple and universal procedure to increase the alleles detected in forensic STR analysis. Reducing the volume of ILS to achieve greater sensitivity is applicable to all STR amplification kits and capillary electrophoresis instruments currently used in forensic DNA analysis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.