No abstract
We describe Vertical Cavity Surface Emitting Laser (VCSEL) reliability tests comprising hundreds of parts and more than a million device-hours. The VCSELs studied were of a previously described production design intended for local-area network data communication at 850 nm. Devices were operated at temperatures of 35, 80, 100, 125, and 150°C and at currents of 5, 10, 15, 20, and 30 mA, and their operating characteristics were measured at room temperature. Additional groups were operated at 225°C. Nominal operation is expected to be at 40°C ambient and near 1 0 mA; stresses due to temperatures and currents above the operating range accelerated degradation. The results support an Arrhenius-type failure-acceleration model with lognormal reliability distribution and lead to an 0.88-1.20 eV estimate for the failure activation energy. When tested at room temperature, typical VCSELs exhibited initial increases in power followed by decreases. The results were essentially independent of the package type (hermetic, unsealed, or overmolded plastic). Time-lapse video of degrading devices was employed in an effort to define the failure mode, which does not appear to be mediated by dark-line defects. Under normal operating conditions the observed VCSEL reliability is equal to, or better than typical reliability results for other A1GaAs data communications lasers or LEDs.
Red VCSELs offer the benefits of improved performance and lower power consumption for medical and industrial sensing, faster printing and scanning, and lower cost, higher speed interconnects based upon plastic optical fiber (POF). However, materials challenges make it more difficult to achieve the desired performance than at the well-developed wavelength of 850 nm. This paper will describe the state of the art of red VCSEL performance and the results of development efforts to achieve improved output power and a broader temperature range of operation. It will also provide examples of the applications of red VCSELs and the benefits they offer. In addition, the packaging flexibility offered by VCSELs, and some examples of non-Hermetic package demonstrations will be discussed. Some of the red VCSEL performance demonstrations include output power of 14 mW CW at room temperature, a record maximum temperature of 115• C for CW operation at an emission wavelength of 689 nm, time to 1% failure at room temperature of approximately 200,000 hours, lifetime in a 50• C, 85% humidity environment in excess of 3500 hours, digital data rate of 3 Gbps, and peak pulsed array power of greater than 100 mW.
The experimental optical interconnection module of the Free-Space Accelerator for Switching Terabit Networks (FAST-Net) project is described and characterized. Four two-dimensional (2-D) arrays of monolithically integrated vertical-cavity surface-emitting lasers (VCSEL's) and photodetectors (PD's) were designed, fabricated, and incorporated into a folded optical system that links a 10 cm x 10 cm multichip smart pixel plane to itself in a global point-to-point pattern. The optical system effects a fully connected network in which each chip is connected to all others with a multichannel bidirectional data path. VCSEL's and detectors are arranged in clusters on the chips with an interelement spacing of 140 microm. Calculations based on measurements of resolution and registration tolerances showed that the square 50-microm detector in a typical interchip link captures approximately 85% of incident light from its associated VCSEL. The measured optical transmission efficiency was 38%, with the losses primarily due to reflections at the surfaces of the multielement lenses, which were not antireflection coated for the VCSEL wavelength. The overall efficiency for this demonstration is therefore 32%. With the measured optical confinement, an optical system that is optimized for transmission at the VCSEL wavelength will achieve an overall efficiency of greater than 80%. These results suggest that, as high-density VCSEL-based smart pixel technology matures, the FAST-Net optical interconnection concept will provide a low-loss, compact, global interconnection approach for high bisection-bandwidth multiprocessor applications in switching, signal processing, and image processing.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.