Highlights
Natural factors had major effects on community dynamics of microbial target groups.
Conversely, “Foxy-2” exposed no major effect on rhizosphere microbial communities.
Archaeal community had greater rhizosphere competence than “Foxy-2” in clayey soil.
Compatibility of indigenous soil nitrifying prokaryotes with “Foxy-2” was verified.
A European transect was established, ranging from Sweden to the Azores, to determine the relative influence of geographic factors and agricultural small-scale management on the grassland soil microbiome. Within each of five countries (factor ‘Country’), which maximized a range of geographic factors, two differing growth condition regions (factor ‘GCR’) were selected: a favorable region with conditions allowing for high plant biomass production and a contrasting less favorable region with a markedly lower potential. Within each region, grasslands of contrasting management intensities (factor ‘MI’) were defined: intensive and extensive, from which soil samples were collected. Across the transect, ‘MI’ was a strong differentiator of fungal community structure, having a comparable effect to continental scale geographic factors (‘Country’). ‘MI’ was also a highly significant driver of bacterial community structure, but ‘Country’ was clearly the stronger driver. For both, ‘GCR’ was the weakest driver. Also at the regional level, strong effects of MI occurred on various measures of the soil microbiome (i.e. OTU richness, management-associated indicator OTUs), though the effects were largely regional-specific. Our results illustrate the decisive influence of grassland MI on soil microbial community structure, over both regional and continental scales, and, thus, highlight the importance of preserving rare extensive grasslands.
Our objectives were to (1) monitor the proliferation of the biocontrol agent (BCA) Fusarium oxysporum f. sp. strigae strain “Foxy-2”, an effective soil-borne BCA against the parasitic weed Striga hermonthica, in the rhizosphere of maize under different agro-ecologies, and (2) investigate its impact on indigenous rhizosphere fungal community abundance and composition. Field experiments were conducted in Busia and Homa Bay districts in western Kenya during two cropping seasons to account for effects of soil type, climate, growth stage and seasonality. Maize seeds were coated with or without “Foxy-2” and soils were artificially infested with S. hermonthica seeds. One treatment with nitrogen rich organic residues (Tithonia diversifolia) was established to compensate hypothesized resource competition between “Foxy-2” and the indigenous fungal community. Rhizosphere soil samples collected at three growth stages (i.e., EC30, EC60, EC90) of maize were subjected to abundance measurement of “Foxy-2” and total indigenous fungi using quantitative polymerase chain reaction (qPCR) analysis. Terminal restriction fragment length polymorphism (TRFLP) analysis was used to assess potential alterations in the fungal community composition in response to “Foxy-2” presence. “Foxy-2” proliferated stronger in the soils with a sandy clay texture (Busia) than in those with a loamy sand texture (Homa Bay) and revealed slightly higher abundance in the second season. “Foxy-2” had, however, only a transient suppressive effect on total indigenous fungal abundance which ceased in the second season and was further markedly compensated after addition of T. diversifolia residues. Likewise, community structure of the indigenous fungal community was mainly altered by maize growth stages, but not by “Foxy-2”. In conclusion, no adverse effects of “Foxy-2” inoculation on indigenous fungal rhizosphere communities were observed corroborating the safety of this BCA under the given agro-ecologies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.