No abstract
This paper presents a study where high school students were taught computing and cybersecurity concepts using a robotics platform. 38 students attended a week-long summer camp, starting with projects such as a simulation-only game and a simple autonomous driving program for the robots to learn and apply computational thinking (CT) and networking skills. They were then assigned a series of challenges that required developing progressively more advanced cybersecurity measures to protect their robots. This culminated in a final challenge that required implementing defensive measures such as encryption, secure key exchange, and sequence numbers to prevent cyber attacks during robot operations. We used an evidencecentered design framework to construct rubrics for grading student work. The pre-and post-test results show that the interventions helped students learn cybersecurity and CT concepts, but they had difficulties with networking concepts. These results correlate with scores from the game and the final challenge. Overall, surveys show that the competition-based robotics learning framework was engaging to students, and it supported their learning. However, our intervention needs to be modified to help students learn networking concepts.
is paper presents the time synchronization infrastructure for a low-cost run-time platform and application framework speci cally targeting Smart Grid applications. Such distributed applications require the execution of reliable and accurate time-coordinated actions and observations both within islands of deployments and across geographically distant nodes. e time synchronization infrastructure is built on well-established technologies: GPS, NTP, PTP, PPS and Linux with real-time extensions, running on low-cost BeagleBone Black hardware nodes. We describe the architecture, implementation, instrumentation approach, performance results and present an example from the application domain. Also, we discuss an important nding on the e ect of the Linux RT PREEMPT real-time patch on the accuracy of the PPS subsystem and its use for GPS-based time references. CCS CONCEPTS •Hardware →Smart grid; •Computer systems organization →Real-time system architecture;
Difficulty engaging in reciprocal social interactions is a core characteristic of autism spectrum disorder. The mechanisms supporting effective dynamic real-time social exchanges are not yet well understood. This proof-of-concept hyperscanning electroencephalography study examined neural synchrony as the mechanism supporting interpersonal social interaction in 34 adolescents with autism spectrum disorder (50% female), age 10–16 years, paired with neurotypical confederates of similar age. The degree of brain-to-brain neural synchrony was quantified at temporo-parietal scalp locations as the circular correlation of oscillatory amplitudes in theta, alpha, and beta frequency bands while the participants engaged in a friendly conversation. In line with the hypotheses, interpersonal neural synchrony was significantly greater during the social interaction compared to the baseline. Lower levels of synchrony were associated with increased behavioral symptoms of social difficulties. With regard to sex differences, we found evidence for stronger interpersonal neural synchrony during conversation than baseline in females with autism, but not in male participants, for whom such condition differences did not reach statistical significance. This study established the feasibility of hyperscanning during real-time social interactions as an informative approach to examine social competence in autism, demonstrated that neural coordination of activity between the interacting brains may contribute to social behavior, and offered new insights into sex-related variability in social functioning in individuals with autism spectrum disorders.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.