Dental caries is caused by the release of organic acids from fermentative bacteria, which results in the dissolution of hydroxyapatite matrices of enamel and dentine. While low environmental pH is proposed to cause a shift in the consortium of oral bacteria, favouring the development of caries, the impact of this variable has been overlooked in microbial population studies. This study aimed to detail the zonal composition of the microbiota associated with carious dentine lesions with reference to pH. We used 454 sequencing of the 16S rRNA gene (V3–V4 region) to compare microbial communities in layers ranging in pH from 4.5–7.8 from 25 teeth with advanced dentine caries. Pyrosequencing of the amplicons yielded 449,762 sequences. Nine phyla, 97 genera and 409 species were identified from the quality-filtered, de-noised and chimera-free sequences. Among the microbiota associated with dentinal caries, the most abundant taxa included Lactobacillus sp., Prevotella sp., Atopobium sp., Olsenella sp. and Actinomyces sp. We found a disparity between microbial communities localised at acidic versus neutral pH strata. Acidic conditions were associated with low diversity microbial populations, with Lactobacillus species including L. fermentum, L. rhamnosus and L. crispatus, being prominent. In comparison, the distinctive species of a more diverse flora associated with neutral pH regions of carious lesions included Alloprevotella tanerrae, Leptothrix sp., Sphingomonas sp. and Streptococcus anginosus. While certain bacteria were affected by the pH gradient, we also found that ∼60% of the taxa associated with caries were present across the investigated pH range, representing a substantial core. We demonstrated that some bacterial species implicated in caries progression show selective clustering with respect to pH gradient, providing a basis for specific therapeutic strategies.
Porphyromonas gingivalis is a member of the human oral microbiome abundant in dysbiosis and implicated in the pathogenesis of periodontal (gum) disease. It employs a newly described type-IX secretion system (T9SS) for secretion of virulence factors. Cargo proteins destined for secretion through T9SS carry a recognition signal in the conserved C-terminal domain (CTD), which is removed by sortase PorU during translocation. Here, we identified a novel component of T9SS, PorZ, which is essential for surface exposure of PorU and posttranslational modification of T9SS cargo proteins. These include maturation of enzyme precursors, CTD removal and attachment of anionic lipopolysaccharide for anchorage in the outer membrane. The crystal structure of PorZ revealed two β-propeller domains and a C-terminal β-sandwich domain, which conforms to the canonical CTD architecture. We further documented that PorZ is itself transported to the cell surface via T9SS as a full-length protein with its CTD intact, independently of the presence or activity of PorU. Taken together, our results shed light on the architecture and possible function of a novel component of the T9SS. Knowledge of how T9SS operates will contribute to our understanding of protein secretion as part of host-microbiome interactions by dysbiotic members of the human oral cavity.
Sensory function of human dental pulp has long been known. A composite role has been suggested for odontoblasts as sensory cells in addition to the synthesis of dentinal matrix. However, the neural basis for such a composite sensory activity remains enigmatic. Here, we aimed to probe the question by pursuing an evolutionary logic; if dental pulp is a vestigial sensory organ co-opted to a function of synthesis of mineralized matrix, essential elements of neurosensory organs may persist in dental pulp. Through structural analysis by confocal laser scanning microscopy, three distinct cell populations adjacent to odontoblasts, glial fibrillary acidic protein (GFAP)(+) seracytes, S100(+) telacytes, and HLA-II(+) alacytes were identified in peripheral human dental pulp. Subsequent molecular fingerprinting by quantitative reverse transcriptase-polymerase chain reaction established these cells as analogous to radial glia (GFAP(+) cells), astrocytes (S100(+) cells), and microglia (HLA-II(+) cells) of central nervous system organs. In the cell-rich zone of the pulp, S100(+) cells formed a network, ensheathed unmyelinated axons, and extended end-feet around the capillaries. The microcirculation adjacent to the glial cells in the cell-rich zone possessed ultrastructural features and a gene expression profile typical of the blood-brain barrier system. These novel findings support a new paradigm for understanding sensory functionality of dental pulp by the demonstration of a sophisticated neural structure in the human dental pulp that is analogous to other central sensory organs. Further, the structure that is revealed informs the concept of the evolutionary origin of the dental pulp, suggesting that a neurosensory organ was the precursor structure of teeth.
Consistent adult neurogenic activity in humans is observed in specific niches within the central nervous system. However, the notion of an adult neurogenic niche is challenged by accumulating evidence for ectopic neurogenic activity in other cerebral locations. Herein we interface precision of ultrastructural resolution and anatomical simplicity of accessible human dental pulp neurogenic zone to address this conflict. We disclose a basal level of adult neurogenic activity characterized by glial invasion of terminal microvasculature followed by release of individual platelet‐derived growth factor receptor‐β mural pericytes and subsequent reprogramming into NeuN+ local interneurons. Concomitant angiogenesis, a signature of adult neurogenic niches, accelerates the rate of neurogenesis by amplifying release and proliferation of the mural pericyte population by ≈10‐fold. Subsequent in vitro and in vivo experiments confirmed gliogenic and neurogenic capacities of human neural pericytes. Findings foreshadow the bimodal nature of the glio‐vascular assembly where pericytes, under instruction from glial cells, can stabilize the quiescent microvasculature or enrich local neuronal microcircuits upon differentiation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.