Nicotine consumption is considered a major health problem, where many of those who wish to quit smoking relapse. The problem is that overtime smoking as behaviour is changing into a habit, in which it is connected to internal (e.g., nicotine level, craving) and external (action, time, location) triggers. Smoking cessation apps have proved their efficiency to support smoking who wish to quit smoking. However, still, these applications suffer from several drawbacks, where they are highly relying on the user to initiate the intervention by submitting the factor the causes the urge to smoke. This research describes the creation of a combined Control Theory and deep learning model that can learn the smoker’s daily routine and predict smoking events. The model’s structure combines a Control Theory model of smoking with a 1D-CNN classifier to adapt to individual differences between smokers and predict smoking events based on motion and geolocation values collected using a mobile device. Data were collected from 5 participants in the UK, and analysed and tested on 3 different machine learning model (SVM, Decision tree, and 1D-CNN), 1D-CNN has proved it’s efficiency over the three methods with average overall accuracy 86.6%. The average MSE of forecasting the nicotine level was (0.04) in the weekdays, and (0.03) in the weekends. The model has proved its ability to predict the smoking event accurately when the participant is well engaged with the app.
Smoking is a commonly observed habit worldwide, and is a major cause of disease leading to death. Many techniques have been established in medical and psychological science to help people quit smoking. However, the existing systems are complex, and usually expensive. Recently, wearable sensors and mobile application have become an alternative method of improving health. We propose a human behavioural classification based on the use of a one-dimensional local binary pattern (LBP), combined with a Probabilistic Neural Net (PNN) to differentiate smoking from other movements as measured from a wearable device. Human activity signals were recorded from two sets of 6 and 11 participants, using a smart phones equipped with an accelerometer and gyroscope mounted on a wrist module. The data combined structured and naturalistic scenarios. The proposed architecture was compared to previously studied machine learning algorithms and found to out-perform them, exhibiting ceiling level performance.
Smoking is considered the cause of many health problems. While most smokers wish to quit smoking, many relapse. In order to support an efficient and timely delivery of intervention for those wishing to quit smoking, it is important to be able to model the smoker's behaviour. This research describes the creation of a combined Control Theory and Decision Tree Model that can learn the smoker's daily routine and predict smoking events. The model structure combines a Control Theory model of smoking with a Bagged Decision Tree classifier to adapt to individual differences between smokers, and predict smoking actions based on internal stressors (nicotine level, withdrawal, and time since the last dose) and external stressors (e.g. location, environment, etc.). The designed model has 91.075% overall accuracy of classification rate and the error rate of forecasting the nicotine effect using the designed model is also low (MSE=0.048771, RMSE=0.216324, and NRMSE=0.153946) for regular days and (MSE=0.048804, RMSE=0.216637, and NRMSE=0.195929).
Smoking cessation apps provide efficient, low-cost and accessible support to smokers who are trying to quit smoking. This article focuses on how up-to-date machine learning algorithms, combined with the improvement of mobile phone technology, can enhance our understanding of smoking behaviour and support the development of advanced smoking cessation apps. In particular, we focus on the pros and cons of existing approaches that have been used in the design of smoking cessation apps to date, highlighting the need to improve the performance of these apps by minimizing reliance on self-reporting of environmental conditions (e.g., location), craving status and/or smoking events as a method of data collection. Lastly, we propose that making use of more advanced machine learning methods while enabling the processing of information about the user’s circumstances in real time is likely to result in dramatic improvement in our understanding of smoking behaviour, while also increasing the effectiveness and ease-of-use of smoking cessation apps, by enabling the provision of timely, targeted and personalised intervention.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.