Biofilm is an important virulence factor in Pseudomonas aeruginosa and has a substantial role in antibiotic resistance and chronic burn wound infections. New therapeutic agents against P. aeruginosa, degrading biofilms in burn wounds and improving the efficacy of current antimicrobial agents, are required. In this study, the effects of α-mannosidase, β-mannosidase and trypsin enzymes on the degradation of P. aeruginosa biofilms and on the reduction of ceftazidime minimum biofilm eliminating concentrations (MBEC) were evaluated. All tested enzymes, destroyed the biofilms and reduced the ceftazidime MBECs. However, only trypsin had no cytotoxic effect on A-431 human epidermoid carcinoma cell lines. In conclusion, since trypsin had better features than mannosidase enzymes, it can be a promising agent in combatting P. aeruginosa burn wound infections.
BackgroundEchinococcosis is a zoonotic disease caused by the larval stages of taeniid cestodes of the genus Echinococcus. The two major types of infection in humans are cystic echinococcosis (CE) or hydatidosis and alveolar echinococcosis (AE). It is endemic in some parts of the world, such as the Middle East, with Iran being a part of it. This systematic review and meta-analysis were conducted to determine the prevalence of CE and AE echinococcosis and their epidemiological and clinical aspects in Iran.MethodsElectronic databases, including MEDLINE (via PubMed), SCOPUS, Web of Science, SID and Mag Iran (two Persian scientific search engines) were searched from 1 January 1990 to 8 August 2017. The prevalence of CE and AE echinococcosis was estimated using the random effects meta-analysis. Heterogeneity was evaluated by subgroup analysis. Data were analyzed by STATA version 12.ResultsOf the 2051 records identified in the mentioned electronic databases, Seventy-eight articles met our eligibility criteria, with a total of 214124individuals. The meta-analysis was performed on only 37 out of 78 included studies. The pooled prevalence of CE and AE in Iran was 5% [95% confidence interval )CI(: 3-6%] and 2% [95% CI: 0-5%], respectively. Subgroup meta-analysis revealed that the prevalence of CE was significantly higher in North [9%, 95% CI: 4-18%] and West of Iran [6%, 95% CI: 3-11%], patients younger than 40 years of age [7%, 95% CI: 4-12%], villagers and nomads [6%, 95% CI: 2-12%], and studies that used the combination of serological, clinical, and imaging diagnostic methods [7%, 95% CI: 5-9%]. There were no significant differences between the prevalence of CE among low and high-quality studies. Housewives were the most affected group by hydatidosis (n=24/77, 31%), followed by illiterate people (n=11/77, 14%) and farmers (n= 9/77, 12%). Liver [55%, 95% CI: 46-65%] and lung [28%, 95% CI, 22-35%] were the most common sites of cyst formation.ConclusionsGiven to the importance of echinococcosis on human health and domestic animals industry, it is necessary to implement monitoring and control measures in this regard.
Bacterial biofilms are one of the major issues in the treatment of chronic infections such as chronic wounds, where biofilms are typically polymicrobial. The synergy between species can occur during most polymicrobial infections, where antimicrobial resistance enhances as a result. Furthermore, self-produced extracellular polymeric substance (EPS) in biofilms results in a high tolerance to antibiotics that complicates wound healing. Since most antibiotics fail to remove biofilms in chronic infections, new therapeutic modalities may be required. Disruption of EPS is one of the effective approaches for biofilm eradication. Therefore, degradation of EPS using enzymes may result in improved chronic wounds healing. In the current study, we investigated the efficacy of trypsin, β-glucosidase, and DNase I enzymes on the degradation of dual-species biofilms of Pseudomonas aeruginosa and Staphylococcus aureus in a wound-like medium. These species are the two most common bacteria associated with biofilm formation in chronic wounds. Moreover, the reduction of minimum biofilm eradication concentration (MBEC) of meropenem and amikacin was evaluated when combined with enzymes. The minimum effective concentrations of trypsin, β-glucosidase, and DNase I enzymes to degrade biofilms were 1 μg/ml, 8 U/ml, and 150 U/ml, respectively. Combination of 0.15 μg/ml trypsin and 50 U/ml DNase I had a significant effect on S. aureus-P. aeruginosa biofilms which resulted in the dispersal and dissolution of all biofilms. In the presence of the enzymatic mixture, MBECs of antibiotics showed a significant decrease (p < 0.05), at least 2.5 fold. We found that trypsin/DNase I mixture can be used as an anti-biofilm agent against dual-species biofilms of S. aureus-P. aeruginosa.
BackgroundPseudomonas aeruginosa is a nosocomial pathogen that causes severe infections in immunocompromised patients. Biofilm plays a significant role in the resistance of this bacterium and complicates the treatment of its infections. In this study, the effect of lyticase and β-glucosidase enzymes on the degradation of biofilms of P. aeruginosa strains isolated from cystic fibrosis and burn wound infections were assessed. Moreover, the decrease of ceftazidime minimum biofilm eliminating concentrations (MBEC) after enzymatic treatment was evaluated.ResultsThis study demonstrated the effectiveness of both enzymes in degrading the biofilms of P. aeruginosa. In contrast to the lyticase enzyme, β-glucosidase reduced the ceftazidime MBECs significantly (P < 0.05). Both enzymes had no cytotoxic effect on the A-549 human lung carcinoma epithelial cell lines and A-431 human epidermoid carcinoma cell lines.ConclusionConsidering the characteristics of the β-glucosidase enzyme, which includes the notable degradation of P. aeruginosa biofilms and a significant decrease in the ceftazidime MBECs and non-toxicity for eukaryotic cells, this enzyme can be a promising therapeutic candidate for degradation of biofilms in burn wound patients, but further studies are needed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.