Platinum nanoparticles have been prepared by potentiostatic multipulse electrodeposition with controlled nucleation and growth on freshly cleaved and electrochemically oxidized highly oriented pyrolytic graphite.The influence of the applied potential sequence on the size distribution was investigated. For short electrolysis times, the deposition of nanoparticles takes place via a progressive nucleation mechanism. A narrow size distribution was obtained by controlling independently the nucleation and growth steps, and particles with heights between 52 and 1.4 nm could be prepared by altering the pulse parameters. Anodic oxidation of the substrate had a large influence on the particle size, resulting in the preparation of particles 1.4 nm in height. XPS demonstrated that Pt particles of small size were readily oxidized. The rate of electrochemical methanol oxidation showed a dependence on the particle size, and no oxidation of methanol could be observed for the smaller sizes investigated.
Fullerene-Pt nanoparticle assemblies were prepared by attachment and immobilisation of different Pt nanoparticles on a gold electrode using molecular layers of C60 as a linker system. These assemblies were active for the methanol oxidation following treatment with CO.
Fabrication of tailored nanomaterials with desired structure and properties is the greatest challenge of modern nanotechnology. Herein, we describe a wet chemical method for the preparation of large area metal nanoring arrays. This method is based on self-assembly of polystyrene sphere template on a flat substrate and wicking/reducing metal precursor into the interstices between the template and the substrate. In this article, platinum, gold, and copper nanorings were fabricated by applying 505 nm polystyrene spheres onto highly oriented pyrolytic graphite (HOPG) and Si(100) substrates, followed by reducing the templated metal salt with NaBH(4). AFM images reveal formation of arrays of metal nanorings comprising metal nanoparticles with the average ring height of 5.7 +/- 0.8 nm and diameter of 167.3 +/- 8.9 nm. XPS confirms that these structures are metallic.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.