Background Our study compare the short and long-term efficacy of the intra articular injections (IAIs) of hyaluronic acid (HA), platelet-rich plasma (PRP), plasma rich in growth factors (PRGF), and ozone in patients with knee osteoarthritis (OA). Methods In this randomized clinical trial, 238 patients with mild to moderate knee OA were randomized into 4 groups of IAIs: HA (3 doses weekly), PRP (2 doses with 3 weeks interval), PRGF (2 doses with 3 weeks interval), and Ozone (3 doses weekly). Our outcome measures were the mean changes from baseline (immediately from the first injections) until 2,6, and 12 months post intervention in scores of visual analog scale (VAS), Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC), and Lequesne index. Results A total of 200 patients enrolled in the final analysis. The mean age of patients was 56.9 ± 6.3 years, and 69.5% were women. In 2 months follow up, significant improvement of pain, stiffness, and function were seen in all groups compared to the baseline, but the ozone group had the best results (P < 0.05). In 6 month follow up HA, PRP, and PRGF groups demonstrated better therapeutic effects in all scores in comparison with ozone (P < 0.05). At the end of the 12th month, only PRGF and PRP groups had better results versus HA and ozone groups in all scores (P < 0.05). Despite the fact that ozone showed better early results, its effects begin to wear off earlier than other products and ultimately disappear in 12 months. Conclusions Ozone injection had rapid effects and better short-term results after 2 months, but its therapeutic effects did not persist after 6 months and at the 6-month follow up, PRP,PRGF and HA were superior to ozone. Only patients in PRP and PRGF groups improved symptoms persisted for 12 months. Therefore, these products could be the preferable choices for long-term management. Trial registration Registered in the Iranian Center of Clinical Trials (www.irct.ir) in 11/11/2017 with the following code: IRCT2017082013442N17.
Pancreatic cancer is the most lethal malignancy of the gastrointestinal tract. Due to its propensity for early local and distant spread, affected patients possess extremely poor prognosis. Currently applied treatments are not effective enough to eradicate all cancer cells, and minimize their migration. Besides, these treatments are associated with adverse effects on normal cells and organs. These therapies are not able to increase the overall survival rate of patients; hence, finding novel adjuvants or alternatives is so essential. Up to now, medicinal herbs were utilized for therapeutic goals. Herbal-based medicine, as traditional biotherapeutics, were employed for cancer treatment. Of them, apigenin, as a bioactive flavonoid that possesses numerous biological properties (e.g., anti-inflammatory and anti-oxidant effects), has shown substantial anticancer activity. It seems that apigenin is capable of suppressing the proliferation of cancer cells via the induction of cell cycle arrest and apoptosis. Besides, apigenin inhibits metastasis via down-regulation of matrix metalloproteinases and the Akt signaling pathway. In pancreatic cancer cells, apigenin sensitizes cells in chemotherapy, and affects molecular pathways such as the hypoxia inducible factor (HIF), vascular endothelial growth factor (VEGF), and glucose transporter-1 (GLUT-1). Herein, the biotherapeutic activity of apigenin and its mechanisms toward cancer cells are presented in the current review to shed some light on anti-tumor activity of apigenin in different cancers, with an emphasis on pancreatic cancer.
Background and Aims: Plantar fasciitis (PF) is the leading cause of heel pain in adults. This study was designed to evaluate the effect of hyaluronic acid (HA) injection in reducing the symptoms of PF, compared with corticosteroid (CS) injection as a conventional treatment. Methods: In this triple-blind, randomized, clinical trial, 75 patients who had the symptoms of PF for at least 3 months were randomly divided into two groups of 38 and 37 individuals. Then, each patient received either a single injection of high molecular weight (>2000 kDa) HA (1 mL HA 20 mg + 1 mL lidocaine 2%) or CS (1 mL methylprednisolone 40 mg + 1 mL lidocaine 2%) under the ultrasonography (US) guidance. Visual analog scale (VAS), foot ankle ability index (FAAI), pressure pain threshold (PPT), functional foot index (FFI), and plantar fascia thickness (PFT) were measured using US at baseline, 6 weeks and 24 weeks after the injection. Eventually, at the end of the treatment period, the patients' satisfaction was measured. Intention to treat analysis was used to assess the results. Results: After 24 weeks of follow-up, results from 60 subjects were fully obtained; however, results of 73 patients included into intention to treat analysis in the sixth-week followup. In both groups, VAS, PFT and FFI decreased, while FAAI and PPT increased significantly (P <0.001). At the baseline and at the 24th-week, no significant difference between the two groups was observed in any of the variables. However, a comparison between the baseline and the sixth-week results shows a prominent decrease in PPT and PFT in the CS group compared to the HA group (P = 0.004 and P = 0.011). Finally, there were no statistical differences between the two groups in treatment satisfaction (P = 0.618). Conclusion: Both CS and HA were effective modalities for PF and can improve pain and function with no superiority in 24th-week follow-ups, although CS seems to have a faster trend of improvement in the short term.
In recent decades, tissue engineering has been the most contributor for introducing 2D and 3D biocompatible osteoinductive scaffolds as bone implants. Polyvinylidene fluoride (PVDF), due to the unique mechanical strength and piezoelectric properties, can be a good choice for making a bone bioimplant. In the present study, PVDF nanofibers and film were fabricated as 3D and 2D scaffolds, and then, osteogenic differentiation potential of the human induced pluripotent stem cells (iPSCs) was investigated when grown on the scaffolds by evaluating the common osteogenic markers in comparison with tissue culture plate. Biocompatibility of the fabricated scaffolds was confirmed qualitatively and quantitatively by the 3‐(4,5‐dimethylthiazol‐2‐yl)‐2,5‐diphenyltetrazolium bromide and scanning electron microscopy assays. Human iPSCs cultured on PVDF nanofibers showed a significantly higher alkaline phosphate activity and calcium content compared with the iPSCs cultured on PVDF film. Osteogenic‐related genes and proteins were also expressed in the iPSCs seeded on PVDF nanofibers significantly higher than iPSCs seeded on PVDF film, when investigated by real‐time reverse transcription polymerase chain reaction and western blot analysis, respectively. According to the results, the PVDF nanofibrous scaffold showed a greater osteoinductive property compared with the PVDF film and due to the material similarity of the scaffolds, it could be concluded that the 3D structure could lead to better bone differentiation. Taken together, the obtained results demonstrated that human iPSC‐seeded PVDF nanofibrous scaffold could be considered as a promising candidate for use in bone tissue engineering applications.
Gynecological cancers are among the leading causes of cancer-associated mortality worldwide. While the number of cases are rising, current therapeutic approaches are not efficient enough. There are considerable side-effects as well as treatment resistant types. In addition, which all make the treatment complicated for afflicted cases. Therefore, in order to improve efficacy of the treatment process and patients’ quality of life, searching for novel adjuvant treatments is highly warranted. Curcumin, a promising natural compound, is endowed with numerous therapeutic potentials including significant anticancer effects. Recently, various investigations have demonstrated the anticancer effects of curcumin and its novel analogues on gynecological cancers. Moreover, novel formulations of curcumin have resulted in further propitious effects. This review discusses these studies and highlights the possible underlying mechanisms of the observed effects.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.