In December 2019, an outbreak of novel coronavirus pneumonia occurred, and subsequently attracted worldwide attention when it bloomed into the COVID-19 pandemic. To limit the spread and transmission of the novel coronavirus, governments, regulatory bodies, and health authorities across the globe strongly enforced shut down of educational institutions including medical and dental schools. The adverse effects of COVID-19 on dental education have been tremendous, including difficulties in the delivery of practical courses such as restorative dentistry. As a solution to help dental schools adapt to the pandemic, we have developed a compact and portable teaching-learning platform called DenTeach. This platform is intended for remote teaching and learning pertaining to dental schools at these unprecedented times. This device can facilitate fully remote and physical-distancing-aware teaching and learning in dentistry. DenTeach platform consists of an instructor workstation (DT-Performer), a student workstation (DT-Student), advanced wireless networking technology, and cloud-based data storage and retrieval. The platform procedurally synchronizes the instructor and the student with real-time video, audio, feel, and posture (VAFP). To provide quantitative feedback to instructors and students, the DT-Student workstation quantifies key performance indices (KPIs) related to a given task to assess and improve various aspects of the dental skills of the students. DenTeach has been developed for use in teaching, shadowing, and practice modes. In the teaching mode, the device provides each student with tactile feedback by processing the data measured and/or obtained from the instructor's workstation, which helps the student enhance their dental skills while inherently learning from the instructor. In the shadowing mode, the student can download the augmented videos and start watching, feeling, and repeating the tasks before entering the practice mode. In the practice mode, students use the system to perform dental tasks and have their dental performance skills automatically evaluated in terms of KPIs such that both the student and the instructor are able to monitor student’s work. Most importantly, as DenTeach is packaged in a small portable suitcase, it can be used anywhere by connecting to the cloud-based data storage network to retrieve procedures and performance metrics. This paper also discusses the feasibility of the DenTeach device in the form of a case study. It is demonstrated that a combination of the KPIs, video views, and graphical reports in both teaching and shadowing modes effectively help the student understand which aspects of their work needs further improvement. Moreover, the results of the practice mode over 10 trials have shown significant improvement in terms of tool handling, smoothness of motion, and steadiness of the operation.
The COVID-19 pandemic has caused dramatic effects on the healthcare system, businesses, and education. In many countries, businesses were shut down, universities and schools had to cancel in-person classes, and many workers had to work remotely and socially distance in order to prevent the spread of the virus. These measures opened the door for technologies such as robotics and artificial intelligence to play an important role in minimizing the negative effects of such closures. There have been many efforts in the design and development of robotic systems for applications such as disinfection and eldercare. Healthcare education has seen a lot of potential in simulation robots, which offer valuable opportunities for remote learning during the pandemic. However, there are ethical considerations that need to be deliberated in the design and development of such systems. In this paper, we discuss the principles of roboethics and how these can be applied in the new era of COVID-19. We focus on identifying the most relevant ethical principles and apply them to a case study in dentistry education. DenTeach was developed as a portable device that uses sensors and computer simulation to make dental education more efficient. DenTeach makes remote instruction possible by allowing students to learn and practice dental procedures from home. We evaluate DenTeach on the principles of data, common good, and safety, and highlight the importance of roboethics in Canada. The principles identified in this paper can inform researchers and educational institutions considering implementing robots in their curriculum.
The crystal structures of two aromatic amines are presented: a hydrogen-bonded brominated aniline, and a piperizine derivative.
<p>The COVID-19 pandemic has caused dramatic effects on the healthcare system, businesses, and education. In many countries, businesses were shut down, universities and schools had to cancel in-person classes, and many workers had to work remotely and socially distance in order to prevent the spread of the virus. These measures opened the door for technologies such as robotics and artificial intelligence to play an important role in minimizing the negative effects of such closures. There have been many efforts in the design and development of robotic systems for applications such as disinfection and eldercare. Healthcare education has seen a lot of potential in simulation robots, which offer valuable opportunities for remote learning during the pandemic. However, there are ethical considerations that need to be deliberated in the design and development of such systems. In this paper, we discuss the principles of roboethics and how these can be applied in the new era of COVID-19. We focus on identifying the most relevant ethical principles and apply them to a case study in dentistry education. DenTeach was developed as a portable device that uses sensors and computer simulation to make dental education more efficient. DenTeach makes remote instruction possible by allowing students to learn and practice dental procedures from home. We evaluate DenTeach on the principles of data, common good, and safety, and highlight the importance of roboethics in Canada. The principles identified in this paper can inform researchers and educational institutions considering implementing robots in their curriculum.</p> <p> </p>
<p>The COVID-19 pandemic has caused dramatic effects on the healthcare system, businesses, and education. In many countries, businesses were shut down, universities and schools had to cancel in-person classes, and many workers had to work remotely and socially distance in order to prevent the spread of the virus. These measures opened the door for technologies such as robotics and artificial intelligence to play an important role in minimizing the negative effects of such closures. There have been many efforts in the design and development of robotic systems for applications such as disinfection and eldercare. Healthcare education has seen a lot of potential in simulation robots, which offer valuable opportunities for remote learning during the pandemic. However, there are ethical considerations that need to be deliberated in the design and development of such systems. In this paper, we discuss the principles of roboethics and how these can be applied in the new era of COVID-19. We focus on identifying the most relevant ethical principles and apply them to a case study in dentistry education. DenTeach was developed as a portable device that uses sensors and computer simulation to make dental education more efficient. DenTeach makes remote instruction possible by allowing students to learn and practice dental procedures from home. We evaluate DenTeach on the principles of data, common good, and safety, and highlight the importance of roboethics in Canada. The principles identified in this paper can inform researchers and educational institutions considering implementing robots in their curriculum.</p> <p> </p>
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.