ABSTRACT, from a similar baseline, and to a similar extent, at both low and high K + supply. We compare our results to those of other groups, and conclude that the maintenance of the cytosolic Na + : K + ratio is not central to plant survival under NaCl stress. We offer alternative explanations for sodium sensitivity in relation to the primary acquisition mechanisms of Na + and K + .
CcaA is a β-carbonic anhydrase (CA) that is a component of the carboxysomes of a subset of β-cyanobacteria. This protein, which has a characteristic C-terminal extension of unknown function, is recruited to the carboxysome via interactions with CcmM, which is itself a γ-CA homolog with enzymatic activity in many, but not all cyanobacteria. We have determined the structure of CcaA from Synechocystis sp. PCC 6803 at 1.45 Å. In contrast with the dimer-of-dimers organization of most bacterial β-CAs, or the loose dimer-of-dimers-of-dimers organization found in the plant enzymes, CcaA shows a well-packed trimer-of-dimers organization. The proximal part of the characteristic C-terminal extension is ordered by binding at a site that passes through the two-fold symmetry axis shared with an adjacent dimer; as a result, only one of a pair of converging termini can be ordered at any given time. Docking in Rosetta failed to find well-packed solutions, indicating that formation of the CcaA/CcmM complex probably requires significant backbone movements in at least one of the binding partners. Surface plasmon resonance experiments showed that CcaA forms a complex with CcmM with sub-picomolar affinity, with contributions from residues in CcmM's αA helix and CcaA's C-terminal tail. Catalytic characterization showed CcaA to be among the least active β-CAs characterized to date, with activity comparable with the γ-CA, CcmM, it either complements or replaces. Intriguingly, the C-terminal tail appears to partly inhibit activity, possibly indicating a role in minimizing the activity of unencapsulated enzyme.
Paper is a promising platform for the development of decentralized diagnostic assays owing to the low cost and ease of use of paper-based analytical devices (PADs). It can be challenging to detect on PADs very low concentrations of nucleic acid biomarkers of lengths as used in clinical assays. Herein we report the use of thermophilic helicase-dependent amplification (tHDA) in combination with a paper-based platform for fluorescence detection of probe-target hybridization. Paper substrates were patterned using wax printing. The cellulosic fibers were chemically derivatized with imidazole groups for the assembly of the transduction interface that consisted of immobilized quantum dot (QD)-probe oligonucleotide conjugates. Green-emitting QDs (gQDs) served as donors with Cy3 as the acceptor dye in a fluorescence resonance energy transfer (FRET)-based transduction method. After probe-target hybridization, a further hybridization event with a reporter sequence brought the Cy3 acceptor dye in close proximity to the surface of immobilized gQDs, triggering a FRET sensitized emission that served as an analytical signal. Ratiometric detection was evaluated using both an epifluorescence microscope and a low-cost iPad camera as detectors. Addition of the tHDA method for target amplification to produce sequences of ∼100 base length allowed for the detection of zmol quantities of nucleic acid targets using the two detection platforms. The ratiometric QD-FRET transduction method not only offered improved assay precision, but also lowered the limit of detection of the assay when compared with the non-ratiometric QD-FRET transduction method. The selectivity of the hybridization assays was demonstrated by the detection of single nucleotide polymorphism.
Paper-based platform for the selective detection of DNA targets by hybridization using FRET between intrinsically labeled fluorescent DNA probes and quantum dots.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.