BackgroundOne of the most important complications of fixed orthodontic treatment is the formation of white spots which are initial carious lesions. Addition of antimicrobial agents into orthodontic adhesives might be a wise solution for prevention of white spot formation. The aim of this study was to evaluate the antibacterial properties of a conventional orthodontic adhesive containing three different concentrations of silver/hydroxyapatite nanoparticles.MethodsOne hundred and sixty-two Transbond XT composite discs containing 0, 1, 5, and 10 % silver/hydroxyapatite nanoparticles were prepared and sterilized. Antibacterial properties of these composite groups against Streptococcus mutans, Lactobacillus acidophilus, and Streptococcus sanguinis were investigated using three different antimicrobial tests. Disk agar diffusion test was performed to assess the diffusion of antibacterial agent on brain heart infusion agar plate by measuring bacterial growth inhibition zones. Biofilm inhibition test showed the antibacterial capacity of composite discs against resistant bacterial biofilms. Antimicrobial activity of eluted components from composite discs was investigated by comparing the viable counts of bacteria after 3, 15, and 30 days.ResultsComposite discs containing 5 and 10 % silver/hydroxyapatite nanoparticles were capable of producing growth inhibition zones for all bacterial types. Results of biofilm inhibition test showed that all of the study groups reduced viable bacterial count in comparison to the control group. Antimicrobial activity of eluted components from composite discs was immensely diverse based on the bacterial type and the concentration of nanoparticles.ConclusionsTransbond XT composite discs containing 5 and 10 % silver/hydroxyapatite nanoparticles produce bacterial growth inhibition zones and show antibacterial properties against biofilms.
Introduction: The purpose of this review was to evaluate the available literature for in vitro and in vivo effectiveness of antimicrobial Photodynamic therapy (aPDT) in the field of bacteriology. Methods: A review of the relevant articles carried out in PubMed and Scopus to determine the efficiency of aPDT used in the reduction of microbial infection. Thirty-one relevant documents retrieved from PubMed, Scopus by inserting "antimicrobial photodynamic therapy" and "bacterial infection" and "photodynamic therapy" keywords. Results: According to different results, aPDT can be used as an adjuvant for the treatment of infectious diseases. The use of photosensitizer methylene blue, toluidine blue O (TBO), indocyanine green with light diode laser centered at (630±10 nm) and (650±10 nm) wavelengths have been shown to have significant results for the treatment of infectious diseases and bactericidal properties Conclusion: These findings suggest that, aPDT can be an efficient method in the treatment of localized and superficial infections.
Curcumin is an effective wound healing agent in burn therapy, but due to its low bioavailability, it is required to be formulated for topical therapy. Liposomal nanocarriers are developed as stable and efficient dermal delivery systems. In this study, we prepared curcumin-propylene glycol liposomes (Cur-PgL) to treat animals subjected to second degree burns. The characterization tests confirmed the production of monodisperse nanoliposomes of average size of about 145 nm with high entrapment efficiency percentage and a sustained release behavior. TEM analysis of nanocarriers showed no aggregation in long time storage up to 60 days. The biocompatibility of the Cur-PgL formulation was evaluated by ISO standards. We found that Cur-PgL 0.3% was the effective dose in injured rats without any side effects on intact skin. The cytotoxicity of the Cur-PgL 0.3% nanovesicles was also assessed on human dermal fibroblast (HDF) cells. The results showed no detectable cytotoxicity, but considerable cytotoxicity was observed in higher concentration of 1.5 and 3 mg/ml of free and PgL forms of curcumin. Eight days of application of Cur-PgL on burned rats resulted in a significant (P<0.001) recovery of wound repair parameters, and after 18 days, wound contraction occurred significantly (P < 0.001) compared to the other groups. The antibacterial activity of the Cur-PgL formulation was found to be similar to the silver sulfadiazine (SSD) cream 1% regarding the inhibition of the bacterial growth. In conclusion, the low dose of curcumin nanoliposomal formulation efficiently improved injuries and infections of burn wounds and it can be considered in burn therapy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.