Probiotics are commensal or nonpathogenic microbes that colonize the gastrointestinal tract and confer beneficial effects on the host through several mechanisms such as competitive exclusion, anti-bacterial effects, and modulation of immune responses. There is growing evidence supporting the immunomodulatory ability of some probiotics. Several experimental and clinical studies have been shown beneficial effect of some probiotic bacteria, particularly Lactobacillus and Bifidobacteria strains, on inflammatory and autoimmune diseases. Systemic lupus erythematosus (SLE) is an autoimmune disease that is mainly characterized by immune intolerance towards self-antigens. Some immunomodulatory probiotics have been found to regulate immune responses via tolerogenic mechanisms. Dendritic and T regulatory (Treg) cells, IL-6, IFN-γ, IL-17, and IL-23 can be considered as the most determinant dysregulated mediators in tolerogenic status. As demonstrated by documented experimental and clinical trials on inflammatory and autoimmune diseases, a number of probiotic bacterial strains can restore tolerance in host through modification of such dysregulated mediators. Since there are limited reports regarding to impact of probiotic supplementation in SLE patients, the preset review was aimed to suggest a number of probiotics bacteria, mainly from Bifidobacteria and Lactobacillus strains that are able to ameliorate immune responses. The aim was followed through literature survey on immunoregulatory probiotics that can restore tolerance and also modulate the important dysregulated pro/anti-inflammatory cytokines contributing to the pathogenesis of SLE.
Systemic lupus erythematosus (SLE) concurs with excessive uncontrolled inflammatory immune responses that lead to the loss of immune tolerance. Dendritic cells (DCs) are important and determinant immune cells that regulate immune responses. Tolerogenic DCs with regulatory markers and cytokines could induce regulatory immune cells and responses. Tolerogenic probiotics are capable of producing regulatory DCs from monocytes in in vitro conditions. The purpose of this study was to evaluate the effect of Lactobacillus delbrueckii and Lactobacillus rhamnosus on the production of DCs in an in vitro condition. Peripheral blood mononuclear cells were isolated from the healthy and SLE donors. Monocytes were cultured with optimized concentrations of granulocyte-macrophage colony-stimulating factor (GM-CSF) and interleukin 4 (IL-4) to produce immature DCs (IDCs). An IDC uptake assay was performed, and IDCs of healthy and SLE donors were divided into three subgroups following 48 hours of treatment with GM-CSF and IL-4, along with L. delbrueckii, L. rhamnosus, and mixed probiotics for the production of tolerogenic DCs. The surface expression of Human Leukocyte Antigen-antigen D Related (HLA-DR), CD86, CD80, CD83, CD1a, and CD14 was analyzed using flow cytometry, and the gene expression levels of indoleamine 2,3-dioxygenase (IDO), IL-10, and IL-12 were measured using real-time polymerase chain reaction. We observed significantly reduced expression of costimulatory molecules and other surface markers in the probiotic-induced mature DCs (MDCs) in both healthy and SLE donor groups in comparison with lipopolysaccharide (LPS)-induced MDCs. In addition, the expression of IDO and IL-10 increased, whereas IL-12 decreased significantly in probiotic-induced MDCs compared with LPS-induced MDCs. IDCs and especially mature tolerogenic DC of SLE patients highly expressed IDO. The results of the current study suggested that live probiotics could modify properties of DCs to modulatory cells, which might contribute to the induction of tolerance and renovation of immune hemostasis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.