Neuroscience and clinical researchers are increasingly interested in quantitative magnetic resonance imaging (qMRI) due to its sensitivity to micro-structural properties of brain tissue such as axon, myelin, iron and water concentration. We introduce the hMRI-toolbox, an open-source, easy-to-use tool available on GitHub, for qMRI data handling and processing, presented together with a tutorial and example dataset. This toolbox allows the estimation of high-quality multi-parameter qMRI maps (longitudinal and effective transverse relaxation rates and , proton density and magnetisation transfer saturation) that can be used for quantitative parameter analysis and accurate delineation of subcortical brain structures. The qMRI maps generated by the toolbox are key input parameters for biophysical models designed to estimate tissue microstructure properties such as the MR g-ratio and to derive standard and novel MRI biomarkers. Thus, the current version of the toolbox is a first step towards in vivo histology using MRI (hMRI) and is being extended further in this direction. Embedded in the Statistical Parametric Mapping (SPM) framework, it benefits from the extensive range of established SPM tools for high-accuracy spatial registration and statistical inferences and can be readily combined with existing SPM toolboxes for estimating diffusion MRI parameter maps. From a user's perspective, the hMRI-toolbox is an efficient, robust and simple framework for investigating qMRI data in neuroscience and clinical research.
Multicenter clinical and quantitative magnetic resonance imaging (qMRI) studies require a high degree of reproducibility across different sites and scanner manufacturers, as well as time points. We therefore implemented a multiparameter mapping (MPM) protocol based on vendor's product sequences and demonstrate its repeatability and reproducibility for whole‐brain coverage. Within ~20 min, four MPM metrics (magnetization transfer saturation [MT], proton density [PD], longitudinal [R1], and effective transverse [R2*] relaxation rates) were measured using an optimized 1 mm isotropic resolution protocol on six 3 T MRI scanners from two different vendors. The same five healthy participants underwent two scanning sessions, on the same scanner, at each site. MPM metrics were calculated using the hMRI‐toolbox. To account for different MT pulses used by each vendor, we linearly scaled the MT values to harmonize them across vendors. To determine longitudinal repeatability and inter‐site comparability, the intra‐site (i.e., scan‐rescan experiment) coefficient of variation (CoV), inter‐site CoV, and bias across sites were estimated. For MT, R1, and PD, the intra‐ and inter‐site CoV was between 4 and 10% across sites and scan time points for intracranial gray and white matter. A higher intra‐site CoV (16%) was observed in R2* maps. The inter‐site bias was below 5% for all parameters. In conclusion, the MPM protocol yielded reliable quantitative maps at high resolution with a short acquisition time. The high reproducibility of MPM metrics across sites and scan time points combined with its tissue microstructure sensitivity facilitates longitudinal multicenter imaging studies targeting microstructural changes, for example, as a quantitative MRI biomarker for interventional clinical trials.
Traumatic spinal cord injury (SCI) occurs when an external physical impact acutely damages the spinal cord and leads to permanent neurologic dysfunction, personal disability and social burden. Conventional MRI plays a crucial role in the diagnostic workup of SCI patients as it reveals extrinsic compression of the cord and disruption of the discoligamentous complex. Additionally, it can reveal macrostructural evidence of primary intramedullary damage such as haemorrhage, oedema, post-traumatic cystic cavities and tissue bridges. Quantitative MRI (qMRI), such as magnetisation transfer, MR relaxation mapping and diffusion imaging, enables the tracking of secondary changes across the neuraxis at the microstructural level. Both, conventional MRI and qMRI metrics, obtained early after SCI, are predictive of outcome. Thus, neuroimaging biomarkers may serve as surrogate endpoints for more efficient trials targeting acute and chronic SCI. The adoption of neuroimaging biomarkers in SCI centres may eventually lead to individualized patient care approaches.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.