Objective Although the matricellular protein thrombospondin-1 (TSP1) is highly expressed in the vessel wall in response to injury, its pathophysiological role in the development of vascular disease is poorly understood. This study was designed to test the hypothesis that TSP1 stimulates reactive oxygen species (ROS) production in vascular smooth muscle cells (VSMCs) and induces vascular dysfunction by promoting oxidative stress. Methods and Results Nanomolar concentrations of TSP1 found in human vascular disease robustly stimulated superoxide (O2•-) levels in VSMCs at both cellular and tissue level as measured by cytochrome c and electron paramagnetic resonance. A peptide mimicking the C‐terminus of TSP1 known to specifically bind CD47 recapitulated this response. Transcriptional knockdown of CD47 and a monoclonal inhibitory CD47 antibody abrogated TSP1-triggered O2•− in vitro and ex vivo. TSP1-treatment of VSMCs activated phospholipase C and protein kinase C, resulting in phosphorylation of the NADPH oxidase (Nox) organizer subunit p47phox and subsequent Nox1 activation, leading to impairment of arterial vasodilatation ex vivo. Further, we observed that blockade of CD47 and Nox1 gene silencing in vivo in rats improves TSP1-induced impairment of tissue blood flow following ischemia reperfusion. Conclusion Our data suggest a highly-regulated process of ROS stimulation and blood flow regulation promoted through a direct TSP1/CD47-mediated activation of Nox1. This is the first report to our knowledge of a matricellular protein acting as a ligand for Nox activation and through specific engagement of integrin-associated protein CD47.
In pre-clinical models of PH CD47 targets cMyc to increase ET-1 signaling. In clinical PH TSP1-CD47 is upregulated, and in both, contributes to pulmonary arterial vasculopathy and dysfunction.
Cardiovascular homeostasis and health is maintained through the balanced interactions of cardiac generated blood flow and cross-talk between the cellular components that comprise blood vessels. Central to this cross-talk is endothelial generated nitric oxide (NO) that stimulates relaxation of the contractile vascular smooth muscle (VSMC) layer of blood vessels. In cardiovascular disease this balanced interaction is disrupted and NO signaling lost. Work over the last several years indicates regulation of NO is much more complex than previously believed. It is now apparent the secreted protein thrombospondin-1 (TSP1), that is upregulated in cardiovascular disease and animal models of the same, on activating cell surface receptor CD47, redundantly inhibits NO production and NO signaling. This inhibitory event has implications for baseline and disease-related responses mediated by NO. Further work has identified that TSP1-CD47 signaling stimulates enzymatic reactive oxygen species (ROS) production to further limit blood flow and promote vascular disease. Herein consideration is given to the most recent discoveries in this regard which identify the TSP1-CD47 axis as a major proximate governor of cardiovascular health.
BackgroundTelomere defects are thought to play a role in cardiomyopathies, but the specific cell type affected by the disease in human hearts is not yet identified. The aim of this study was to systematically evaluate the cell type specificity of telomere shortening in patients with heart failure in relation to their cardiac disease, age, and sex.Methods and ResultsWe studied cardiac tissues from patients with heart failure by utilizing telomere quantitative fluorescence in situ hybridization, a highly sensitive method with single‐cell resolution. In this study, total of 63 human left ventricular samples, including 37 diseased and 26 nonfailing donor hearts, were stained for telomeres in combination with cardiomyocyte‐ or α‐smooth muscle cell‐specific markers, cardiac troponin T, and smooth muscle actin, respectively, and assessed for telomere length. Patients with heart failure demonstrate shorter cardiomyocyte telomeres compared with nonfailing donors, which is specific only to cardiomyocytes within diseased human hearts and is associated with cardiomyocyte DNA damage. Our data further reveal that hypertrophic hearts with reduced ejection fraction exhibit the shortest telomeres. In contrast to other reported cell types, no difference in cardiomyocyte telomere length is evident with age. However, under the disease state, telomere attrition manifests in both young and older patients with cardiac hypertrophy. Finally, we demonstrate that cardiomyocyte‐telomere length is better sustained in women than men under diseased conditions.ConclusionsThis study provides the first evidence of cardiomyocyte‐specific telomere shortening in heart failure.
BackgroundLeft ventricular heart failure (LVHF) remains progressive and fatal and is a formidable health problem because ever‐larger numbers of people are diagnosed with this disease. Therapeutics, while relieving symptoms and extending life in some cases, cannot resolve this process and transplant remains the option of last resort for many. Our team has described a widely expressed cell surface receptor (CD47) that is activated by its high‐affinity secreted ligand, thrombospondin 1 (TSP1), in acute injury and chronic disease; however, a role for activated CD47 in LVHF has not previously been proposed.Methods and ResultsIn experimental LVHF TSP1‐CD47 signaling is increased concurrent with up‐regulation of cardiac histone deacetylase 3 (HDAC3). Mice mutated to lack CD47 displayed protection from transverse aortic constriction (TAC)‐driven LVHF with enhanced cardiac function, decreased cellular hypertrophy and fibrosis, decreased maladaptive autophagy, and decreased expression of HDAC3. In cell culture, treatment of cardiac myocyte CD47 with a TSP1‐derived peptide, which binds and activates CD47, increased HDAC3 expression and myocyte hypertrophy in a Ca2+/calmodulin protein kinase II (CaMKII)‐dependent manner. Conversely, antibody blocking of CD47 activation, or pharmacologic inhibition of CaMKII, suppressed HDAC3 expression, decreased myocyte hypertrophy, and mitigated established LVHF. Downstream gene suppression of HDAC3 mimicked the protective effects of CD47 blockade and decreased hypertrophy in myocytes and mitigated LVHF in animals.ConclusionsThese data identify a proximate role for the TSP1‐CD47 axis in promoting LVHF by CaKMII‐mediated up‐regulation of HDAC3 and suggest novel therapeutic opportunities.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.