We perform a multichannel analysis of the indirect signals for the Wino Dark Matter, including one-loop electroweak and Sommerfeld enhancement corrections. We derive limits from cosmic ray antiprotons and positrons, from continuum galactic and extragalactic diffuse γ-ray spectra, from the absence of γ-ray line features at the galactic center above 500 GeV in energy, from γrays toward nearby dwarf spheroidal galaxies and galaxy clusters, and from CMB power-spectra. Additionally, we show the future prospects for neutrino observations toward the inner Galaxy and from antideuteron searches. For each of these indirect detection probes we include and discuss the relevance of the most important astrophysical uncertainties that can impact the strength of the derived limits. We find that the Wino as a dark matter candidate is excluded in the mass range bellow 800 GeV from antiprotons and between 1.8 and 3.5 TeV from the absence of a γ-ray line feature toward the galactic center. Limits from other indirect detection probes confirm the main bulk of the excluded mass ranges.
Indications for a -ray line(s) signal toward the Galactic Center at an energy of about 130 GeV have been recently presented. While dark matter annihilations are a viable candidate for this signal, it is generally expected that such a flux would be correlated to a -ray component with continuum energy spectrum due to dark matter pair annihilating into other Standard Model particles. We use the -ray data from the inner 10 Â 10 window to derive limits for a variety of dark matter annihilation final states. Extending the window of observation, we discuss bounds on the morphological shape of a dark matter signal associated to the line, applying both standard templates for the dark matter profile, such as an Einasto or a Navarro-Frenk-White profile, and introducing a new more general parametrization.
We study the high latitude (|b| > 10 • ) diffuse γ-ray emission in the Galaxy in light of the recently published data from the Fermi collaboration at energies between 100 MeV and 100 GeV. The unprecedented accuracy in these measurements allows to probe and constrain the properties of sources and propagation of cosmic rays (CRs) in the Galaxy, as well as confirming conventional assumptions made on the interstellar medium (ISM). Using the publicly available DRAGON code, that has been shown to reproduce local measurements of CRs, we study assumptions made in the literature on atomic (HI) and molecular hydrogen (H2) gas distributions in the ISM, and non spatially uniform models of diffusion in the Galaxy. By performing a combined analysis of CR and γ-ray spectra, we derive constraints on the properties of the ISM gas distribution and the vertical scale height of galactic CR diffusion, which may have implications also on indirect Dark Matter detection. We also discuss some of the possible interpretations of the break at high rigidity in CR protons and helium spectra, recently observed by PAMELA and their impact on γ-rays.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.