The shipbuilding industry, engine manufacturing, aviation, rocket and space technology are promising fields of application for polymeric composite materials. Shape-generating moulding tools with internal heating are used for the creation of a more economically viable method of moulding of internally heated composite structures. The use of a fine-fibered resistive structure in the heated tools allows implementation of effective heating of the composite and elimination of the need for expensive and energy-intensive heating equipment. The aim of this paper was the reduction of energy consumption for internally heated moulding tools by choosing the optimal parameters for their resistive layer. A method for determination of the parameters of the moulding tool resistive layer was developed. This method allows calculation of the heating layer parameters and implementation of the specified time–temperature regime for moulding of the composite structure. It was shown that energy saving for the heated fiberglass shape-generating moulding tools was from 40 to 60%. It was found that the increase in the thickness of the moulded package of the polymeric composite material resulted not only in a higher supplied power for the heating system, but also in a complication of the method for system control, because of the growing exothermic effect of the binder curing reaction. For composite products based on Hysol EA 9396 binder, thicknesses more than 4 mm are critical, because it is not possible to cope with the self-heating effect only by cooling with ambient air already utilized at the twentieth minute of the moulding process. The influence of the physical and mechanical characteristics of the moulding tool material and stiffening ribs was analysed in terms of energy consumption and controllability of the heating system. Fiberglass shows the lowest energy consumption. Heating of the aluminium and steel moulding tools for the same purpose will require 20% and 45% more power, respectively. An increase in the number of stiffening ribs has a strong effect on the heat removal of the heating system. With a small number of aluminium ribs it is not possible to maintain the specified temperature–time regime for a fiberglass moulded package of 5 mm thick with the use of the equipment. However, when the number of stiffeners is increased to 10, the exothermic effect of the reaction becomes smoother and then the heating equipment can cope with the task. An experimental prototype of heating equipment of moulding tools for the manufacturing of structures of polymeric composite materials, as well as a flexible thermal blanket for repair of non-separable structures, were developed. The results can be the basis for a new method of optimal design of parameters of moulding tool structure at minimal heat removal to the environment.
Repair procedures with the use of composite patches are considered to be the most effective among the current technologies of repair of the structures of various applications. In the process of moulding-on of a patch made of polymeric composite material by means of curing, technological stresses arise in the patch. Determination of residual technological stresses is a priority task for the modelling of the repair process. Reduction of residual stresses can be achieved by optimization of the mode of repair patch curing. For meeting this objective, the method for determination of technological stresses, which arise in the structure under repair in the process of curing of a composite patch, has been developed. The method takes into account the shrinkage, change in physico-mechanical characteristics, rheological processes occurring in the binder during moulding process, and determination of stresses in the structure under repair at any time. Therefore, premature failure of the repair joint at the stage of repair can be avoided. It is shown that the method adequately describes the level of deformations and stresses in the structure being repaired at the stage of heating and holding of the composite patch. Increase in the moulding temperature leads to a reduction in residual stresses in the structure under repair. However, current stresses at the stages of heating and temperature holding are increased significantly. Reliability of assumptions and developed method is confirmed by the comparison with the experimental data. The obtained experimental graph of total deformation of the composite patch allowed us to clearly determine the moment of residual stress occurrence in the structure under repair. This moment matches quite exactly (with the discrepancy not exceeding 5 min) the gel point determined analytically based on dependence of the degree of curing on the moulding mode. Consequently, the research together with the results previously obtained allows making an integrated choice of geometric parameters of the repair composite patch and temperature–time regime of its curing in order to ensure the specified level of strength and stiffness of the structure under repair.
There is an urgent problem of finding an economically viable method of maintenance and restoration of the bearing capacity of structures of various applications. Repair of structures with patches made of polymeric composite materials is one of the most promising repair technologies. However, an improper choice of parameters of the composite patch leads to unjustified increase in the structure mass and the cost of its further operation. These situations result from the lack of reliable methods for developing the repair process, which take into account the influence of the patch geometry and conditions for performance of repair works on the bearing capacity of the repaired structure. The mathematical model of the reparable composite shell–type panel taking into account inhomogeneity of transverse shear deformations at stepped variation of its thickness has been developed. In contrast to the classical theory of layered shells, the model allows simplifying a three-dimensional problem by setting of the displacement field on the layers’ interfaces and their linear interpolation over thickness of the panel, as well as considering the transverse shear deformations resulting from the strength, temperature, or shrinkage loading. According to results, the maximum rise in stresses in the case of a notched panel occurs in the weakened layer, and it is from this layer the failure of the structure will start. In the event of the patch, the panel surface opposite the reinforcement is the most loaded (i.e., susceptible to failure) surface. To confirm the reliability of the developed model, we compared the analytical calculations with the results of experimental and numerical studies of the deformed state of a panel of step–variable thickness by the method of holographic interferometry and modelling by the finite element method. Displacement fields available from experiments correspond to the predicted theoretical results. The resulting maximum error does not exceed 7%. The data obtained during numerical modelling allowed us to conclude that the accuracy of theoretical calculations is sufficient for engineering practice. Results of the work can be used to solve the practical problems such as determination of stress–strain behaviour of a damaged structure or structure after repair, specification of the permissible delamination dimensions, and defining of parameters of the bonded repair process.
The process of manufacturing of the structures of polymeric composite materials is accompanied by various technological defects. Delamination defects have the greatest impact on the bearing capacity of the composite structures. The method for assessment of the stress-strain behavior of a panel structure made of polymeric composite materials, which is damaged by delamination, has been developed. This method allows determining the degree of stress concentration in the area of step change in thickness and identifying the most dangerous point where the structural failure may start. In contrast to the classical theory of laminated plates, the proposed model gives an opportunity to simplify three-dimensional problem by setting the displacement field on the interfaces of layers and their linear interpolation over the plate thickness, taking into account the transverse shear deformation. Stress-strain behavior of the plate with delamination was determined according to the computational model of the plate with a cut for the case when the layers in the defect area cannot take up the applied load. According to the results obtained, distribution of stresses over the plate thickness changes significantly in the area of step transition to the delamination and near it. At the distance, it approaches the stress distribution in a plate of the uniform thickness. It allowed confirming the previous conclusions that maximum rise in stresses may occur in the weakened layer near the delamination, initiating the failure of the structure. Reliability of the developed mathematical model is confirmed by comparison with the results of experimental studies. The resulting maximum error does not exceed 7% and demonstrates good convergence of results. With the use of the developed method, it is possible to solve the important practical tasks of studying the loss of performance of the panel structures made of polymeric composite materials with delaminations and determining the optimal methods for repair of such defects.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.