Pea (Pisum sativum L.) plants inoculated with Rhizobium leguminosarum bv. viciae effective strain 248 were irrigated with nitrogen-free medium supplemented with 0, 25, 50 or 75 mM NaCl. The inhibitory effect of salinity on the growth of pea plants treated with 25 mM NaCl occurred 6 weeks post inoculation. In case of 75 mM NaCl treatment, the same effect was observed 2 weeks post inoculation. In contrast to investigations described in the literature our results clearly indicated that 25 mM NaCl stimulated nodule formation, however, in contrast to control nodules (the medium without NaCl), the nodules were considerably smaller. Remaining variants of salt treatment reduced plant growth, nodulation, and total nodule volume calculated per plant. Microscopic observations showed that salinity: (1) caused the loss of turgor of the nodule peripheral cells, (2) changed nodule zonation, (3) stimulated infection thread enlargement and expansion, (4) caused disturbances in bacterial release from the infection threads, and (5) induced synthesis of electron dense material (EDM) and its deposition in vacuoles. It was also found that cisternae of RER were involved in the formation of special cytoplasmic compartments responsible for synthesis of EDM. Autofluorescence study revealed that salinity increased accumulation of phenolics in pea nodules, as well.
Different models have been proposed to explain the operation of oxygen diffusion barrier in root nodules of leguminous plants. This barrier participates in protection of oxygen-sensitive nitrogenase, the key enzyme in nitrogen fixation, from inactivation. Details concerning structural and biochemical properties of the barrier are still lacking. Here, the properties of pea root nodule cortical cells were examined under normal conditions and after shoot removal. Microscopic observations, including neutral red staining and epifluorescence investigations, showed that the inner and outer nodule parenchyma cells exhibit different patterns of the central vacuole development. In opposition to the inner part, the outer parenchyma cells exhibited vacuolar shrinkage and formed cell wall infoldings. Shoot removal induced vacuolar shrinkage and formation of infoldings in the inner parenchyma and uninfected cells of the symbiotic tissue, as well. It is postulated that cells which possess shrinking vacuoles are sensitive to the external osmotic pressure. The cells can give an additional resistance to oxygen diffusion by release of water to the intercellular spaces.Immunolocalization studies proved higher expression of endo-β-1,4-glucanases within expanding cells of the outer cortex of pea nodules comparing with nodule endodermis or nodule parenchyma, so it is suggested that (1) endo-glucanases are involved in growth related modifications of cell walls and (2) enlarged cells decrease nodule conductance to oxygen.
During nodule development on pea roots, apoplast undergoes changes in activity of plant cell wall proteins such as expansins (EXPs). Because the accumulation of EXP protein has been correlated with the growth of various plant organs, we investigated using Western Blot and immunolocalization studies with antibody against PsEXP1, whether this protein was accumulated in the expanding cells of nodule. Immunoblot results indicated the presence of a 30-kDa band specific for pea root nodules. The EXP proteins content rose during growth of pea root nodules. Expansin(s) protein was localized in nodule apoplast as well as in the infection thread walls. The enhanced amount of expansin-like proteins in meristematic part of nodule, root and shoot was shown. The localization of this protein in the meristematic cell walls can be related to the loosening of plant cell wall before cell enlargement. Both, plant cell enlargement and infection thread growth require activity of expansin(s). Possible involvement of EXPs in the process of pea root nodule development is also discussed.
Changes in the activity of acid phosphatase (AcPase) in the apoplast of pea root nodule were investigated. The activity was determined using lead and cerium methods. The results indicated a following sequence of AcPase activity appearance during the development of the infection thread: 1) low AcPase activity appears in the outer part of cells of symbiotic bacteria; 2) bacteria show increased AcPase activity, and the enzyme activity appears in the thread walls; 3) activity exhibits also matrix of the infection thread; 4) bacteria just before their release from the infection threads show high AcPase activity; 5) AcPase activity ceases after bacteria transformation into bacteroids. The increase in bacterial AcPase activity may reflect a higher demand for inorganic phosphorus necessary for propagation of the bacteria within the infection threads and/or involved in bacteria release from the infection threads.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.