Several investigators have pointed out that electron and neutron contamination from high‐energy photon beams are clinically important. The aim of this study is to assess electron and neutron contamination production by various prostheses in a high‐energy photon beam of a medical linac. A 15 MV Siemens PRIMUS linac was simulated by MCNPX Monte Carlo (MC) code and the results of percentage depth dose (PDD) and dose profile values were compared with the measured data. Electron and neutron contaminations were calculated on the beam's central axis for Co‐Cr‐Mo, stainless steel, Ti‐alloy, and Ti hip prostheses through MC simulations. Dose increase factor (DIF) was calculated as the ratio of electron (neutron) dose at a point for 10×10 cm2 field size in presence of prosthesis to that at the same point in absence of prosthesis. DIF was estimated at different depths in a water phantom. Our MC‐calculated PDD and dose profile data are in good agreement with the corresponding measured values. Maximum dose increase factor for electron contamination for Co‐Cr‐Mo, stainless steel, Ti‐alloy, and Ti prostheses were equal to 1.18, 1.16, 1.16, and 1.14, respectively. The corresponding values for neutron contamination were respectively equal to: 184.55, 137.33, 40.66, and 43.17. Titanium‐based prostheses are recommended for the orthopedic practice of hip junction replacement. When treatment planning for a patient with hip prosthesis is performed for a high‐energy photon beam, attempt should be made to ensure that the prosthesis is not exposed to primary photons.PACS numbers: 87.56.bd, 87.55.kh, 87.55.Gh
Background: Given the importance of scattered and low doses in secondary cancer caused by radiation treatment, the point dose of critical organs, which were not subjected to radiation treatment in breast cancer radiotherapy, was measured.Objective: The purpose of this study is to evaluate the peripheral dose in two techniques of breast cancer radiotherapy with two energies. Methods: Eight different plans in two techniques (conventional and conformal) and two photon energies (6 and 15 MeV) were applied to Rando Alderson Phantom’s DICOM images. Nine organs were contoured in the treatment planning system and specified on the phantom. To measure the photon dose, forty-eight thermoluminescence dosimeters (MTS700) were positioned in special places on the above nine organs and plans were applied to Rando phantom with Elekta presice linac. To obtain approximately the same dose distribution in the clinical organ volume, a wedge was used on planes with an energy of 6 MeV photon. Results: Point doses in critical organs with 8 different plans demonstrated that scattering in low-energy photon is greater than high-energy photon. In contrast, neutron contamination in high-energy photon is not negligible. Using the wedge and shield impose greater scattering and neutron contamination on patients with low-and high-energy photon, respectively. Conclusion: Deciding on techniques and energies required for preparing an acceptable treatment plan in terms of scattering and neutron contamination is a key issue that may affect the probability of secondary cancer in a patient.
Hypothetical153 Gd source a b s t r a c t BackgroundBrachytherapy is an advanced cancer treatment. In brachytherapy practice radioactive seeds or sources are placed inside or in a close vicinity of the tumor, irradiating a high radiation dose to the tumor while reducing the radiation exposure to the surrounding healthy tissues. Brachytherapy is a radiation therapy modality which is accounted as localized, precise and high-technology treatment. Photon emitting http://dx
The CSM40 Cs source model is currently being used in clinical brachytherapy. According to the recommendations of task group No. 43 (TG-43) of the American Association of Physicists in Medicine, dosimetry parameters of brachytherapy sources should be determined by two independent investigators before their clinical use. The aim of this study was to determine the TG-43 dosimetry parameters for a medium-dose-rate CSM40Cs source. The determined dosimetric parameters included the air kerma strength, dose rate constant, radial dose function, and anisotropy function. To determine the source's dosimetric parameters, the CSM40 source was stimulated by the Monte Carlo N-Particle MCNP code. The TG-43 parameters were compared with the data of Vijande et al. on this source. The results showed that the dosimetry parameters for this source had good agreement with the results of Vijande et al. The dosimetric parameters of the CSM40 source can be used in treatment-planning systems incorporating this source model. The data can also be used for the quality assurance of treatment-planning systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.