The results demonstrate that the proposed algorithm is highly accurate and able to detect and repair the hair pixels with few errors. In addition, the segmentation veracity of the skin lesion is effectively improved after our proposed hair removal algorithm.
BackgroundWith the increase of X-ray use for medical diagnostic purposes, knowing the given doses is necessary in patients for comparison with reference levels. The concept of reference doses or diagnostic reference levels (DRLs) has been developed as a practical aid in the optimization of patient protection in diagnostic radiology.ObjectivesTo assess the radiation doses to neonates from diagnostic radiography (chest and abdomen). This study has been carried out in the neonatal intensive care unit of a province in Iran.Patients and MethodsEntrance surface dose (ESD) was measured directly with thermoluminescent dosimeters (TLDs). The population included 195 neonates admitted for a diagnostic radiography, in eight NICUs of different hospital types.ResultsThe mean ESD for chest and abdomen examinations were 76.3 µGy and 61.5 µGy, respectively. DRLs for neonate in NICUs of the province were 88 µGy for chest and 98 µGy for abdomen examinations that were slightly higher than other studies. Risk of death due to radiation cancer incidence of abdomens examination was equal to 1.88 × 10 -6 for male and 4.43 × 10 -6 for female. For chest X-ray, it was equal to 2.54 × 10 -6 for male and 1.17 × 10 -5 for female patients.ConclusionDRLs for neonates in our province were slightly higher than values reported by other studies such as European national diagnostic reference levels and the NRPB reference dose. The main reason was related to using a high mAs and a low kVp applied in most departments and also a low focus film distance (FFD). Probably lack of collimation also affected some exams in the NICUs.
This study highlights the limitations of TiGRT TPSs in calculating of the out-of-field dose. It should be noted that out-of-field data for this TPS should only be applied with a certain understanding of the accuracy of calculated dose outside the treatment field. Therefore, using the TPS-calculated dose could lead to an underestimation of secondary cancer risk as well as a weak clinical decision for patients with implantable cardiac pacemakers or pregnant patients.
The aim of this study was to quantify the dose enhancement by gadolinium and gold nanoparticles in brachytherapy. MCNPX Monte Carlo code was used to simulate four brachytherapy sources: (60)Co, (198)Au, (192)Ir, (169)Yb. To verify the accuracy of our simulations, the obtained values of dose rate constants and radial dose functions were compared with corresponding published values for these sources. To study dose enhancements, a spherical soft tissue phantom with 15 cm in radius was simulated. Gadolinium and gold nanoparticles at 10, 20 and 30 mg/ml concentrations were separately assumed in a 1 × 1 × 1 cm(3) volume simulating tumour. The simulated dose to the tumour with the impurity was compared to the dose without impurity, as a function of radial distance and concentration of the impurity, to determine the enhancement of dose due to the presence of the impurity. Dose enhancements in the tumour obtained in the presence of gadolinium and gold nanoparticles with concentration of 30 mg/ml, were found to be in the range of -0.5-106.1 and 0.4-153.1 % respectively. In addition, at higher radial distances from the source center, higher dose enhancements were observed. GdNPs can be used as a high atomic number material to enhance dose in tumour volume with dose enhancements up to 106.1 % when used in brachytherapy. Regardless considering the clinical limitations of the here-in presented model, for a similar source and concentration of nanoparticles, gold nanoparticles show higher dose enhancement than gadolinium nanoparticles and can have more clinical usefulness as dose enhancer material.
In single photon emission computed tomography (SPECT), the collimator is a crucial element of the imaging chain and controls the noise resolution tradeoff of the collected data. The current study is an evaluation of the effects of different thicknesses of a low-energy high-resolution (LEHR) collimator on tomographic spatial resolution in SPECT. In the present study, the SIMIND Monte Carlo program was used to simulate a SPECT equipped with an LEHR collimator. A point source of 99mTc and an acrylic cylindrical Jaszczak phantom, with cold spheres and rods, and a human anthropomorphic torso phantom (4D-NCAT phantom) were used. Simulated planar images and reconstructed tomographic images were evaluated both qualitatively and quantitatively. According to the tabulated calculated detector parameters, contribution of Compton scattering, photoelectric reactions, and also peak to Compton (P/C) area in the obtained energy spectrums (from scanning of the sources with 11 collimator thicknesses, ranging from 2.400 to 2.410 cm), we concluded the thickness of 2.405 cm as the proper LEHR parallel hole collimator thickness. The image quality analyses by structural similarity index (SSIM) algorithm and also by visual inspection showed suitable quality images obtained with a collimator thickness of 2.405 cm. There was a suitable quality and also performance parameters’ analysis results for the projections and reconstructed images prepared with a 2.405 cm LEHR collimator thickness compared with the other collimator thicknesses.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.