In this study, poly(lactic‐co‐glycolic acid) (PLGA)–gelatin scaffolds were fabricated using the freeze‐casting technique. Polydopamine (PDA) coating was applied on the surface of scaffolds to enhance the hydrophilicity, bioactivity, and cellular behavior of the composite constructs. Further, the synergistic effect of PDA coating and lamellar microstructure of scaffolds was evaluated on the promotion of properties. Based on morphological observations, freeze‐casting constructs showed lamellar pore channels while the uniformity and pore size were slightly affected by deposition of PDA. The hydrophilicity and swelling capacity of the scaffolds were assessed using contact angle measurement and phosphate buffered saline absorption ratio. The results indicated a significant increment in water–matrix interactions following surface modification. The evaluation of the biodegradation ratio revealed the higher degree of degradation in PDA‐coated samples owing to the presence of hydrophilic functional groups in the chemical structure of PDA. On the other hand, the bioactivity potential of PDA in the simulated body fluid solution confirmed the possibility of using coated constructs as a bone reconstructive substitute. The improvement of cellular attachment and filopodia formation in PDA‐contained matrixes was the other benefit of the coating process. Furthermore, cellular proliferation and ALP activity were enhanced after PDA coating. The suggested PDA‐coated PLGA–gelatin scaffolds can be applied in bone tissue regeneration.
Here, the role of simvastatin-loaded graphene oxide embedded in polyurethane-polycaprolactone nanofibers for bone tissue engineering has been investigated. The scaffolds were physicochemically and mechanically characterized, and obtained polymeric composites were used as MG-63 cell culture scaffolds. The addition of graphene oxide-simvastatin to nanofibers generates a homogeneous and uniform microstructure as well as a reduction in fiber diameter. Results of water-scaffolds interaction indicated higher hydrophilicity and absorption capacity as a function of graphene oxide addition. Scaffolds’ mechanical properties and physical stability improved after the addition of graphene oxide. Inducing bioactivity after the addition of simvastatin-loaded graphene oxide terminated its capability for hard tissue engineering application, evidenced by microscopy images and phase characterization. Nanofibrous scaffolds could act as a sustained drug carrier. Using the optimal concentration of graphene oxide-simvastatin is necessary to avoid toxic effects on tissue. Results show that the scaffolds are biocompatible to the MG-63 cell and support alkaline phosphatase activity, illustrating their potential use in bone tissue engineering. Briefly, graphene-simvastatin-incorporated in polymeric nanofibers was developed to increase bioactive components’ synergistic effect to induce more bioactivity and improve physical and mechanical properties as well as in vitro interactions for better results in bone repair.
The aim of this study was to fabricate three-dimensional bone scaffolds using polycaprolactone and egg shell powder. The scaffolds were coated with sodium alginate/egg white. SEM was used to investigate egg shell particles on the surface of each string of scaffolds. The presence of calcium carbonate in the scaffold structure was confirmed by microstructural analyses employing XRD. Egg shell-related functional groups were discovered using FTIR investigations. Bone cells were used to conduct biocompatibility tests on scaffolds (MG-63). Finally, scaffolds with the highest proportion of egg whites and eggshells have the best cell survival rate. It may be concluded that the PCL/7% Esh/15% Ew scaffold is a good option for application in bone tissue engineering.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.