Norzoanthamine, an alkaloid isolated from Zoanthus sp., can suppress the loss of bone weight and strength in ovariectomized mice. Norzoanthamine derivatives can also strongly inhibit the growth of P-388 murine leukemia cell lines and human platelet aggregation. However, norzoanthamine's densely functionalized complex stereostructure and scarce availability from natural sources have proved a synthetic challenge. We report the stereoselective total synthesis of norzoanthamine in 41 steps, with an overall yield of 3.5% (an average of 92% yield each step).
Cyst nematodes are troublesome parasites that live on, and destroy, a range of important host vegetable plants. Damage caused by the potato cyst nematode has now been reported in over 50 countries. One approach to eliminating the problem is to stimulate early hatching of the nematodes, but key hatching stimuli are not naturally available in sufficient quantities to do so. Here, we report the first chemical synthesis of solanoeclepin A, the key hatch-stimulating substance for potato cyst nematode. The crucial steps in our synthesis are an intramolecular cyclization reaction for construction of the highly strained tricyclo[5.2.1.0¹'⁶]decane skeleton (DEF ring system) and an intramolecular Diels-Alder reaction of a furan derivative for the synthesis of the ABC carbon framework. The present synthesis has the potential to contribute to addressing one of the critical food issues of the twenty-first century.
Total synthesis of ingenol, a diterpene isolated from the genus Euphorbia, was accomplished on the basis of the novel key reactions. The highly strained ingenane skeleton was constructed through an intramolecular cyclization reaction of an acetylene dicobalt complex followed by a rearrangement reaction of an epoxy alcohol. The C(3),C(4),C(5)-triol moiety was introduced by a stereoselective double dihydroxylation reaction of a diene having C(2)-C(3) and C(4)-C(5) double bonds.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.