To evaluate the soft tissue response of calcium phosphate cement (CPC), consisting of an equimolar mixture of tetracalcium phosphate (TTCP) and dicalcium phosphate anhydrous (DCPA) under conditions close to those encountered in actual surgical procedures, we implanted three types of CPC [conventional CPC (c-CPC), fast-setting CPC (FSCPC), and antiwashout type FSCPC (aw-FSCPC; formerly called nondecay type FSCPC or nd-FSCPC)] subcutaneously in the abdomens of rats immediately (1 min) after mixing. At 1 week after surgery, histological examination and compositional analysis were performed using light microscopy and powder X-ray diffraction (XRD), respectively. The implanted c-CPC was crumbled completely, whereas FSCPC and aw-FSCPC retained their shape. Large vesicles containing copious inflammatory effusion were subcutaneously formed around the c-CPC. Histologically, many foreign-body giant cells were collected around the c-CPC, and moderate inflammatory cell infiltration was observed at 1 week after surgery. In contrast, the FSCPC and aw-FSCPC were covered with a thin layer of granulation tissue that included few giant cells and presented slight inflammatory cell infiltration, and no effusion was observed. The XRD analysis of the c-CPC revealed the presence of some unreacted DCPA even 1 week after implantation, whereas almost no DCPA was found in the FSCPC or aw-FSCPC. In conclusion, it was found that CPC does not always show excellent tissue response. When c-CPC is implanted subcutaneously in rats immediately after mixing, it fails to set and causes a severe inflammatory response. Therefore, the type of CPC should be chosen according to the clinical particulars. CPC should be used in a manner that assures its setting reaction. We recommend the use of FSCPC and aw-FSCPC for surgical applications, such as orthopedics, plastic and reconstructive surgery, and oral and maxillofacial surgery, where the cement might otherwise crumble due to the pressure before setting.
A hydroxyapatite [(HAP) Ca10(PO4)6(OH)2] putty that behaves like a putty or self-curing resin was made by increasing the amount of sodium alginate in non-decay type fast-setting calcium phosphate cement (nd-FSCPC). nd-FSCPC became viscous as the sodium alginate concentration was increased. The best handling properties were obtained when nd-FSCPC contained 8% sodium alginate in its liquid phase. When a 2-kg glass plate was placed on the paste, HAP putty spread to form an area three times that of FSCPC paste. Thus, HAP putty is expected to be easier to use than FSCPC in the filling of bone defects. HAP putty did not decay; in fact, it set within approximately 20 min when immersed in distilled water immediately after mixing. The wet diametral tensile strength value of HAP putty was approximately 12 MPa after 24 h, the same as that for nd-FSCPC containing 0.5% sodium alginate in its liquid phase, or FSCPC that is free from sodium alginate. The elements constituting set HAP putty were examined using powder X-ray diffraction and found to be predominantly apatitic minerals after 24 h. Since the handling properties of a putty or self-curing resin-like cement are very useful in certain surgical procedures, HAP putty made by increasing the sodium alginate concentration in nd-FSCPC is potentially a valuable new biomaterial for use in plastic and reconstructive surgery, as well as oral and maxillofacial surgery.
Melatonin influences the release of growth hormone and cortisol in humans, and it was recently reported that it promoted bone formation. On the other hand, fibroblast growth factor-2 (FGF-2) was reported to facilitate the proliferation of osteoblasts. In the present study, we examined the effect of recombinant human FGF-2 and melatonin on the promotion of osteogenesis around titanium implants. Twenty-four 10-week-old female rats of the Wistar strain received titanium implants in both tibiae. In the experimental groups, 100 mg/kg body weight of melatonin was administered by intraperitoneal injection for 4 weeks after implantation and 10 microg of FGF-2 was locally injected around the implant sites 5 days after implantation. The control groups were administered saline only. In the control group, few newly formed bone could be seen around the implants. It was observed to be in direct contact with the implant surface, but otherwise unmineralized connective tissue was occasionally interposed. In the experimental group, newly formed bone was observed around the titanium implant. In addition, in contrast to the control group, abundant bone trabeculae were seen in the medullary canal region. Bone trabeculae were directly connected to existing cortical bone. These results strongly suggested that melatonin and FGF-2 have the potential to promote osseointegration.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.