Implantation of a stented elephant trunk into the descending aorta combined with replacement of the ascending aorta and total arch for acute type A aortic dissection is effective in closing the residual false lumen of the descending aorta and in preventing expansion of the descending aorta. However, further technical modifications, such as using a short stented elephant trunk, eliminating aortic clamping, shortening CPB and spinal cord ischemic time, and reconstruction of left subclavian artery, are needed to prevent neurologic complications.
Cenicriviroc (CVC) is a small-molecule chemokine receptor antagonist with highly potent and selective anti-human immunodeficiency virus type 1 (HIV-1) activity through antagonizing C–C chemokine receptor type 5 (CCR5) as a coreceptor of HIV-1. CVC also strongly antagonizes C–C chemokine receptor type 2b (CCR2b), thereby it has potent anti-inflammatory and immunomodulatory effects. CVC is currently under clinical trials in the patients for treatment of nonalcoholic steatohepatitis, in which immune cell activation and dysregulation of proinflammatory cytokines play an important role in its pathogenesis. In this study, CVC was examined for its inhibitory effect on the replication of SARS-CoV-2, the causative agent of COVID-19, in cell cultures and found to be a selective inhibitor of the virus. The 50% effective concentrations of CVC were 19.0 and 2.9 μM in the assays based on the inhibition of virus-induced cell destruction and viral RNA levels in culture supernatants of the infected cells, respectively. Interestingly, the CCR5-specific antagonist maraviroc did not show any anti-SARS-CoV-2 activity. Although the mechanism of SARS-CoV-2 inhibition by CVC remains to be elucidated, CCR2b does not seem to be its target molecule. Considering the fact that the regulation of excessive immune activation is required to treat COVID-19 patients at the late stage of the disease, CVC should be further pursued for its potential in the treatment of SARS-CoV-2 infection.
The excellent activity of 6-amino-3-(3,5-dimethylbenzyl)-1-(4-aminobenzyl)uracil (EC50: 0.010 ± 0.006 µM, SI: >1923) may serve as the basis for conducting further investigations on the behavior of this class of compounds against drug-resistant mutants.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.