Gene transcription and ubiquitin-mediated proteolysis are two processes that have seemingly nothing in common: transcription is the first step in the life of any protein and proteolysis the last. Despite the disparate nature of these processes, a growing body of evidence indicates that ubiquitin and the proteasome are intimately involved in gene control. Here, we discuss the deep mechanistic connections between transcription and the ubiquitin-proteasome system, and highlight how the intersection of these processes tightly controls expression of the genetic information.
Many transcription factors, particularly those involved in the control of cell growth, are unstable proteins destroyed by ubiquitin-mediated proteolysis. In a previous study of sequences targeting the transcription factor Myc for destruction, we observed that the region in Myc signaling ubiquitin-mediated proteolysis overlaps closely with the region in Myc that activates transcription. Here, we present evidence that the overlap of these two activities is not unique to Myc, but reflects a more general phenomenon. We show that a similar overlap of activation domains and destruction elements occurs in other unstable transcription factors and report a close correlation between the ability of an acidic activation domain to activate transcription and to signal proteolysis. We also show that destruction elements from yeast cyclins, when tethered to a DNA-binding domain, activate transcription. The intimate overlap of activation domains and destruction elements reveals an unexpected convergence of two very different processes and suggests that transcription factors may be destroyed because of their ability to activate transcription.
We report here that the prototypical yeast transcription factor Gal4 undergoes two distinct modes of ubiquitin-mediated proteolysis: one that occurs independent of transcription and restricts Gal4 function, and another that is transcription coupled and essential for productive activation of Gal4 target genes. Destruction of transcriptionally active Gal4 depends on an F box protein called Dsg1/Mdm30. In the absence of Dsg1, Gal4 is stable, nonubiquitylated, and unable to productively stimulate transcription. Analysis of the phenotype of dsg1-null yeast reveals a striking disconnect between GAL gene RNA and protein levels; in the absence of Dsg1, Gal4 target genes are transcribed, but the resulting RNAs are not translated. The translational defects of these RNAs are related to defects in phosphorylation of the RNA polymerase II carboxy-terminal domain, which in turn affects recruitment of RNA processing machinery. We propose that Gal4 ubiquitylation and destruction are required for initiation-competent transcription complexes to transition to fully mature elongating complexes capable of appropriate mRNA processing.
Research on astronaut health and model organisms have revealed six features of spaceflight biology that guide our current understanding of fundamental molecular changes that occur during space travel. The features include oxidative stress, DNA damage, mitochondrial dysregulation, epigenetic changes (including gene regulation), telomere length alterations, and microbiome shifts. Here we review the known hazards of human spaceflight, how spaceflight affects living systems through these six fundamental features, and the associated health risks of space exploration. We also discuss the essential issues related to the health and safety of astronauts involved in future missions, especially planned long-duration and Martian missions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.