The airway epithelium consists of diverse cell types, including neuroendocrine (NE) cells. These cells are thought to function as chemoreceptors and as a component of the stem cell niche as well as the cells of origin in small-cell lung cancer. NE cells often localize at bifurcation points of airway tubes, forming small clusters called neuroepithelial bodies (NEBs). To investigate NEB development, we established methods for 3D mapping and ex vivo 4D imaging of developing lungs. We found that NEBs localize at stereotypic positions in the bifurcation area irrespective of variations in size. Notch-Hes1 signaling contributes to the differentiation of solitary NE cells, regulating their number but not localization. Live imaging revealed that individual NE cells migrate distally to and cluster at bifurcation points, driving NEB formation. We propose that NEB development is a multistep process involving differentiation of individual NE cells and their directional migration to organize NEBs.
Mammalian lungs have the ability to recognize external environments by sensing different compounds in inhaled air. Pulmonary neuroendocrine cells (PNECs) are rare, multi-functional epithelial cells currently garnering attention as intrapulmonary sensors; PNECs can detect hypoxic conditions through chemoreception. Because PNEC overactivation has been reported in patients suffering from respiratory diseases – such as asthma, chronic obstructive pulmonary disease, bronchopulmonary dysplasia and other congenital diseases – an improved understanding of the fundamental characteristics of PNECs is becoming crucial in pulmonary biology and pathology. During the past decade, murine genetics and disease models revealed the involvement of PNECs in lung ventilation dynamics, mechanosensing and the type 2 immune responses. Single-cell RNA sequencing further unveiled heterogeneous gene expression profiles in the PNEC population and revealed that a small number of PNECs undergo reprogramming during regeneration. Aberrant large clusters of PNECs have been observed in neuroendocrine tumors, including small-cell lung cancer (SCLC). Modern innovation of imaging analyses has enabled the discovery of dynamic migratory behaviors of PNECs during airway development, perhaps relating to SCLC malignancy. This Review summarizes the findings from research on PNECs, along with novel knowledge about their function. In addition, it thoroughly addresses the relevant questions concerning the molecular pathology of pulmonary diseases and related therapeutic approaches.
During biogenesis of the peroxisome, a subcellular organelle, the peroxisomal-targeting signal 1 (PTS1) receptor Pex5 functions as a shuttling receptor for PTS1-containing peroxisomal matrix proteins. However, the precise mechanism of receptor shuttling between peroxisomes and cytosol remains elusive despite the identification of numerous peroxins involved in this process. Herein, a new factor was isolated by a combination of biochemical fractionation and an in vitro Pex5 export assay, and was identified as AWP1/ZFAND6, a ubiquitin-binding NF-κB modulator. In the in vitro Pex5 export assay, recombinant AWP1 stimulated Pex5 export and an anti-AWP1 antibody interfered with Pex5 export. AWP1 interacted with Pex6 AAA ATPase, but not with Pex1-Pex6 complexes. Preferential binding of AWP1 to the cysteine-ubiquitinated form of Pex5 rather than to unmodified Pex5 was mediated by the AWP1 A20 zinc-finger domain. Inhibition of AWP1 by RNA interference had a significant effect on PTS1-protein import into peroxisomes. Furthermore, in AWP1 knockdown cells, Pex5 stability was decreased, similar to fibroblasts from patients defective in Pex1, Pex6 and Pex26, all of which are required for Pex5 export. Taken together, these results identify AWP1 as a novel cofactor of Pex6 involved in the regulation of Pex5 export during peroxisome biogenesis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.