Here we investigated the transduction characteristics of adeno-associated viral vector (AAV) serotypes 1, 2, 5, 8 and 9 in the marmoset cerebral cortex. Using three constructs that each has hrGFP under ubiquitous (CMV), or neuron-specific (CaMKII and Synapsin I (SynI)) promoters, we investigated (1) the extent of viral spread, (2) cell type tropism, and (3) neuronal transduction efficiency of each serotype. AAV2 was clearly distinct from other serotypes in small spreading and neuronal tropism. We did not observe significant differences in viral spread among other serotypes. Regarding the cell tropism, AAV1, 5, 8 and 9 exhibited mostly glial expression for CMV construct. However, when the CaMKII construct was tested, cortical neurons were efficiently transduced (>∼70% in layer 3) by all serotypes, suggesting that glial expression obscured neuronal expression for CMV construct. For both SynI and CaMKII constructs, we observed generally high-level expression in large pyramidal cells especially in layer 5, as well as in parvalbumin-positive interneurons. The expression from the CaMKII construct was more uniformly observed in excitatory cells compared with SynI construct. Injection of the same viral preparations in mouse and macaque cortex resulted in essentially the same result with some species-specific differences.
Two-photon imaging with genetically encoded calcium indicators (GECIs) enables long-term observation of neuronal activity in vivo. However, there are very few studies of GECIs in primates. Here, we report a method for long-term imaging of a GECI, GCaMP6f, expressed from adeno-associated virus vectors in cortical neurons of the adult common marmoset (Callithrix jacchus), a small New World primate. We used a tetracycline-inducible expression system to robustly amplify neuronal GCaMP6f expression and up- and downregulate it for more than 100 days. We succeeded in monitoring spontaneous activity not only from hundreds of neurons three-dimensionally distributed in layers 2 and 3 but also from single dendrites and axons in layer 1. Furthermore, we detected selective activities from somata, dendrites, and axons in the somatosensory cortex responding to specific tactile stimuli. Our results provide a way to investigate the organization and plasticity of cortical microcircuits at subcellular resolution in non-human primates.
To understand the relationship between the structure and function of primate neocortical areas at a molecular level, we have been screening for genes differentially expressed across macaque neocortical areas by restriction landmark cDNA scanning (RLCS). Here, we report enriched expression of the paraneoplastic antigen-like 5 gene (PNMA5) in association areas but not in primary sensory areas, with the lowest expression level in primary visual cortex. In situ hybridization in the primary sensory areas revealed PNMA5 mRNA expression restricted to layer II. Along the ventral visual pathway, the expression gradually increased in the excitatory neurons from the primary to higher visual areas. This differential expression pattern was very similar to that of retinol-binding protein (RBP) mRNA, another association-area-enriched gene that we reported previously. Additional expression analysis for comparison of other genes in the PNMA gene family, PNMA1, PNMA2, PNMA3, and MOAP1 (PNMA4), showed that they were widely expressed across areas and layers but without the differentiated pattern of PNMA5. In mouse brains, PNMA1 was only faintly expressed and PNMA5 was not detected. Sequence analysis showed divergence of PNMA5 sequences among mammals. These findings suggest that PNMA5 acquired a certain specialized role in the association areas of the neocortex during primate evolution.
SignificanceWhich brain area drives hand/arm movements after learning or brain injury? When does motor cortical activity generate appropriate hand/arm movements? To address these issues, it is necessary to manipulate motor cortical activity in a controlled manner. Optogenetic tools allow neuronal activity to be manipulated in a variety of animals, but forelimb movements in nonhuman primates have not previously been optogenetically induced or modulated. Here, we improved a method of optogenetic cortical stimulation and induced overt forelimb movements in the common marmoset, a New World monkey. Photostimulation also modulated voluntary forelimb movements, with the modulated movement trajectories depending on the stimulation site and timing. Our results open doors for noninvasive interrogation of motor circuits in behaving nonhuman primates.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.