ROS1 gene rearrangement was observed in around 1–2 % of NSCLC patients and in several other cancers such as cholangiocarcinoma, glioblastoma, or colorectal cancer. Crizotinib, an ALK/ROS1/MET inhibitor, is highly effective against ROS1 -rearranged lung cancer and is used in clinic. However, crizotinib resistance is an emerging issue, and several resistance mechanisms, such as secondary kinase-domain mutations (e.g., ROS1-G2032R) have been identified in crizotinib-refractory patients. Here we characterize a new selective ROS1/NTRK inhibitor, DS-6051b, in preclinical models of ROS1- or NTRK-rearranged cancers. DS-6051b induces dramatic growth inhibition of both wild type and G2032R mutant ROS1–rearranged cancers or NTRK-rearranged cancers in vitro and in vivo . Here we report that DS-6051b is effective in treating ROS1- or NTRK-rearranged cancer in preclinical models, including crizotinib-resistant ROS1 positive cancer with secondary kinase domain mutations especially G2032R mutation which is highly resistant to crizotinib as well as lorlatinib and entrectinib, next generation ROS1 inhibitors.
Long non-coding RNAs (lncRNAs) are frequently dysregulated in a variety of human cancers. However, their biological roles in these cancers remain incompletely understood. In this study, we analyze the gene expression profiles of colon cancer tissues and identify a previously unannotated lncRNA, FLJ39051, that we term GSEC (G-quadruplex-forming sequence containing lncRNA), as a lncRNA that is upregulated in colorectal cancer. We further demonstrate that knockdown of GSEC results in the reduction of colon cancer cell motility. We also show that GSEC binds to the DEAH box polypeptide 36 (DHX36) RNA helicase via its G-quadruplex-forming sequence and inhibits DHX36 G-quadruplex unwinding activity. Moreover, knockdown of DHX36 restores the reduced migratory activity of colon cancer cells caused by GSEC knockdown. These results suggest that GSEC plays an important role in colon cancer cell migration by inhibiting the function of DHX36 via its G-quadruplex structure.
Chromosomal abnormalities are good guideposts when hunting for cancer-related genes. We analyzed copy number alterations of 163 primary gastric cancers using array-based comparative genomic hybridization and simultaneously performed a genome-wide integrated analysis of copy number and gene expression using microarray data for 58 tumors. We showed that chromosome 6p21 amplification frequently occurred secondary to ERBB2 amplification, was associated with poorer prognosis and caused overexpression of half of the genes mapped. A comprehensive small interfering RNA knockdown of 58 genes overexpressed in tumors identified 32 genes that reduced gastric cancer cell growth. Enforced expression of 16 of these genes promoted cell growth in vitro, and six genes showing more than two-fold activity conferred tumor-forming ability in vivo. Among these six candidates, GLO1, encoding a detoxifying enzyme glyoxalase I (GLO1), exhibited the strongest tumor-forming activity. Coexpression of other genes with GLO1 enhanced growth-stimulating activity. A GLO1 inhibitor, S-p-bromobenzyl glutathione cyclopentyl diester, inhibited the growth of two-thirds of 24 gastric cancer cell lines examined. The efficacy was found to be associated with the mRNA expression ratio of GLO1 to GLO2, encoding glyoxalase II (GLO2), another constituent of the glyoxalase system. GLO1 downregulation affected cell growth through inactivating central carbon metabolism and reduced the transcriptional activities of nuclear factor kappa B and activator protein-1. Our study demonstrates that GLO1 is a novel metabolic oncogene of the 6p21 amplicon, which promotes tumor growth and aberrant transcriptional signals via regulating cellular metabolic activities for energy production and could be a potential therapeutic target in gastric cancer.
The tumor suppressor adenomatous polyposis coli (APC) is mutated in sporadic and familial colorectal tumors. APC stimulates the activity of the Cdc42- and Rac1-specific guanine nucleotide exchange factor Asef and promotes the migration and invasion of colorectal tumor cells. Furthermore, Asef is overexpressed in colorectal tumors and is required for colorectal tumorigenesis. It is also known that NOTCH signaling plays critical roles in colorectal tumorigenesis and fate determination of intestinal progenitor cells. Here we show that NOTCH3 up-regulates Asef expression by activating the Asef promoter in colorectal tumor cells. Moreover, we demonstrate that microRNA-1 (miR-1) is down-regulated in colorectal tumors and that miR-1 has the potential to suppress NOTCH3 expression through direct binding to its 3’-UTR region. These results suggest that the miR-1-NOTCH3-Asef pathway is important for colorectal tumor cell migration and may be a promising molecular target for the treatment of colorectal tumors.
The number of nuclear divisions in meiosis is strictly limited to two. Although the precise mechanism remains unknown, this seems to be achieved by adjusting the anaphase-promoting complex/cyclosome (APC/C) activity to degrade cyclin. Here, we describe a fission yeast cuf2 mutant that enters into a third nuclear division cycle, represented by ectopic spindle assembly and abnormal chromosome segregation. Cuf2 is a meiotic transcription factor, and its critical target is fzr1 þ /mfr1 þ , which encodes a meiotic APC/C activator. fzr1D also enters a third nuclear division. Thus, Cuf2 ensures termination of the M-phase cycle by boosting Fzr1 expression to generate functional gametes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.