Bone marrow stromal cells (MSCs) are multipotent stem cells that have the potential to differentiate into bone, cartilage, fat and muscle. We now demonstrate that MSCs can be induced to differentiate into cells with Schwann cell characteristics, capable of eliciting peripheral nervous system regeneration in adult rats. MSCs treated with beta-mercaptoethanol followed by retinoic acid and cultured in the presence of forskolin, basic-FGF, PDGF and heregulin, changed morphologically into cells resembling primary cultured Schwann cells and expressing p75, S-100, GFAP and O4. The MSCs were genetically engineered by transduction with retrovirus encoding green fluorescent protein (GFP), and then differentiated by treatment with factors described above. They were transplanted into the cut ends of sciatic nerves, which then responded with vigorous nerve fibre regeneration within 3 weeks of the operation. Myelination of regenerated fibers by GFP-expressing MSCs was recognized using confocal and immunoelectron microscopy. The results suggest that MSCs are able to differentiate into myelinating cells, capable of supporting nerve fibre re-growth, and they can therefore be applied to induce nerve regeneration.
The signals that prompt the axons to send out processes in peripheral nerves after axotomy are not well understood. Here, we report that galectin-1 can play an important role in this initial stage. We developed an in vitro nerve regeneration model that allows us to monitor the initial axon and support cell outgrowth from the proximal nerve stump, which is comparable to the initial stages of nerve repair. We isolated a factor secreted from COS1 cells that enhanced axonal regeneration, and we identified the factor as galectin-1. Recombinant human galectin-1 (rhGAL-1) showed the same activity at low concentrations (50 pg/ml) that are two orders of magnitude lower than those of lectin activity. A similarly low concentration was also effective in in vivo experiments of axonal regeneration with migrating reactive Schwann cells to a grafted silicone tube after transection of adult rat peripheral nerve. Moreover, the application of functional anti-rhGAL-1 antibody strongly inhibited the regeneration in vivo as well as in vitro. The same effect of rhGAL-1 was confirmed in crush/freeze experiments of the adult mouse sciatic nerve. Because galectin-1 is expressed in the regenerating sciatic nerves as well as in both sensory neurons and motor neurons, we suggest that galectin-1 may regulate initial repair after axotomy. This high activity of the factor applied under nonreducing conditions suggests that galectin-1 may work as a cytokine, not as a lectin.
Both SB and PPV gave excellent primary and final anatomical success rates. The macula-off status was associated with a lower success rate in the SB group, although break location and lens status had no significant effect on success rates in either group.
We developed an in vivo electroporation method to introduce foreign genes into retinal ganglion cells (RGCs). After the intravitreous injection of the plasmid gene (20 mg), five electric pulses (6 V/cm, 100 ms duration) were each delivered twice with 5 min interval to the rat eye using a contact lens-type electrode (cathodal) attached to the cornea and a needle electrode (anodal) inserted to the middle of the forehead. The efficiency of the genetic introduction into RGCs and tissue damage to the eyeball was evaluated using a green fluorescent protein (GFP) gene, TUNEL and histological observation. DiI retrograde labeling revealed that 24.474.7% of all RGCs were electrointroduced with the GFP gene. TUNEL and histological analysis showed a few tissue damages in the cornea, lens and retina. To confirm whether this method can actually rescue damaged RGCs, glial cell line-derived neurotrophic factor (GDNF) was electrointroduced into RGCs after optic nerve transection. After the electrointroduction, a significant increase in the number of surviving RGCs was observed 2 and 4 weeks after the optic nerve transection, and the decrease of caspase 3 and 9 was detected by RT-PCR. These results suggest that this method may be useful for the delivery of genes into RGCs with simplicity and minimal tissue damage. Gene Therapy (2005) 12, 289-298.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.