Antifibrinolytic agents have been prophylactically administered to patients undergoing cardiopulmonary bypass (CPB) to reduce postoperative bleeding due to plasmin-mediated coagulation disturbances. After the recent market withdrawal of aprotinin, a potent bovine-derived plasmin inhibitor, two lysine analogs, epsilon-aminocaproic acid and tranexamic acid are currently available for clinical use. Although the use of aprotinin recently raised major concerns about postoperative thrombosis and organ dysfunctions, there is a paucity of information on the potential complications related to lysine analogs. Using the available preclinical and clinical data, we present current perspectives on the hemostatic mechanism and potential harms of antifbirnolytic therapy related to cardiac surgery. Fibrin formation is the critical step for hemostasis at the site of vascular injury, and localized fibrinolytic activity counterbalances excess fibrin formation which might result in vascular occlusion. Inhibition of the endogenous fibrinolytic system may be associated with thrombotic complications in susceptible organs. It is thus important to understand CPB-related changes in endogenous fibrinolytic proteins (e.g., tissue plasminogen activator (tPA), plasminogen) and antifibrinolytic proteins (e.g., alpha(2)-antiplasmin).
Massive thrombosis following cardiac surgery is a highly lethal event with limited treatment options. Particular attention should be paid to the status of thrombin regulatory proteins before protamine and other hemostatic interventions in patients undergoing complex cardiac surgery with antifibrinolytic agents.
Oxidative stress, chronic inflammation, dyslipidemia, hyperglycemia, and shear stress (physical effect) are risk factors associated with the pathogenesis of atherosclerosis. Rice bran, a by-product of rice milling process, is known to house polyphenols and vitamins which exhibit potent antioxidant and anti-inflammatory properties. Through recent emerging knowledge of rice bran in health and wellness, the present study was aimed to assess the ameliorative effects of rice bran extracts (RBE) derived from Japanese colored rice varieties in modulating risk factors of atherosclerosis via in vitro and in vivo study models. Pre-treatment of lipopolysaccharide (LPS)-stimulated murine J774A.1 macrophage-like cells with RBE alleviated nitric oxide (NO) overproduction and downregulated gene expressions of pro-inflammatory modulators: tumor necrosis factor-α (TNF-α), interleukin (IL)-α (IL-1α), IL-1β, IL-6, and inducible nitric oxide synthase (iNOS). In addition, RBE also significantly attenuated LPS-stimulated protein expressions of iNOS, TNF-α, IL-1α, and IL-6 in J774A.1 macrophage-like cells as compared to non-treated LPS control group. In in vivo , 12 weeks of RBE dietary supplementations significantly reduced (p < 0.05) total cholesterol, triglycerides, and pro-atherogenic oxidized LDL/β2-glycoprotein I (oxLDL/β2GPI) complexes at plasma levels, in high fat diet (HFD) induced low density lipoprotein receptor knockout ( Ldlr −/- ) mice. En face pathological assessments of murine aortas also revealed significant reductions by 38% (p < 0.05) in plaque sizes of RBE-supplemented HFD mice groups as compared to non RBE-supplemented HFD control mice group. Moreover, gene expressions of aortic (iNOS, TNF-α, IL-1β) and hepatic (TNF-α, IL-1α, IL-1β) pro-inflammatory modulators were also downregulated in RBE-supplemented mice groups. Present study has revealed the potent health attributes and application of RBE as a dietary supplement to attenuate risks of inadvertent oxidative damage and chronic inflammation underlying the pathogenesis of atherosclerosis. Intrinsically, present preliminary findings may provide global health prospects for future dietary implementation of RBE in management of atherosclerosis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.