Teleosts comprise more than half of all vertebrate species and have adapted to a variety of marine and freshwater habitats 1 . Their genome evolution and diversification are important subjects for the understanding of vertebrate evolution. Although draft genome sequences of two pufferfishes have been published 2,3 , analysis of more fish genomes is desirable. Here we report a high-quality draft genome sequence of a small egg-laying freshwater teleost, medaka (Oryzias latipes). Medaka is native to East Asia and an excellent model system for a wide range of biology, including ecotoxicology, carcinogenesis, sex determination 4-6 and developmental genetics 7 . In the assembled medaka genome (700 megabases), which is less than half of the zebrafish genome, we predicted 20,141 genes, including 2,900 new genes, using 59-end serial analysis of gene expression tag information. We found single nucleotide polymorphisms (SNPs) at an average rate of 3.42% between the two inbred strains derived from two regional populations; this is the highest SNP rate seen in any vertebrate species. Analyses based on the dense SNP information show a strict genetic separation of 4 million years (Myr) between the two populations, and suggest that differential selective pressures acted on specific gene categories. Four-way comparisons with the human, pufferfish (Tetraodon), zebrafish and medaka genomes revealed that eight major interchromosomal rearrangements took place in a remarkably short period of 50 Myr after the whole-genome duplication event in the teleost ancestor and afterwards, intriguingly, the medaka genome preserved its ancestral karyotype for more than 300 Myr.We applied the whole-genome shotgun approach to an inbred strain, , derived from the southern Japanese population, as the main target. A total of 13.8 million reads amounting to approximately 10.6-fold genome coverage were obtained from the shotgun plasmid, fosmid and bacterial artificial chromosome (BAC) libraries. A newly developed RAMEN assembler was used to process the shotgun reads to generate contigs and scaffolds. The N50 values (50% of nucleotides in an assembly are in scaffolds-or contigs-longer than or equal to the N50 value) are ,1.41 megabases (Mb) for scaffolds and ,9.8 kilobases (Kb) for contigs. The total length of the contigs reached 700.4 Mb, which, from now on, we refer to as the medaka genome size.To construct ultracontigs, the scaffolds were integrated with the medaka genetic map by using SNP markers. For this purpose, we further obtained about 2.8-fold coverage of shotgun reads from another inbred strain HNI (refs 9, 10), which is derived from the northern Japanese population. The reads were assembled by RAMEN to scaffolds covering 648 Mb. Aligning the HNI contigs with the HdrR genome using BLASTZ 11 , we identified 16.4 million SNPs as well as 1.40 million insertions and 1.45 million deletions in non-repetitive regions (Supplementary Table 2). We selected 2,401 SNPs and genetically mapped them onto medaka chromosomes using a backcross panel between the...
UV-A͞blue light acts to regulate a number of physiological processes in higher plants. These include light-driven chloroplast movement and phototropism. The NPH1 gene of Arabidopsis encodes an autophosphorylating protein kinase that functions as a photoreceptor for phototropism in response to low-intensity blue light. However, nph1 mutants have been reported to exhibit normal phototropic curvature under high-intensity blue light, indicating the presence of an additional phototropic receptor. A likely candidate is the nph1 homologue, npl1, which has recently been shown to mediate the avoidance response of chloroplasts to high-intensity blue light in Arabidopsis. Here we demonstrate that npl1, like nph1, noncovalently binds the chromophore flavin mononucleotide (FMN) within two specialized PAS domains, termed LOV domains. Furthermore, when expressed in insect cells, npl1, like nph1, undergoes light-dependent autophosphorylation, indicating that npl1 also functions as a light receptor kinase. Consistent with this conclusion, we show that a nph1 npl1 double mutant exhibits an impaired phototropic response under both low-and highintensity blue light. Hence, npl1 functions as a second phototropic receptor under high fluence rate conditions and is, in part, functionally redundant to nph1. We also demonstrate that both chloroplast accumulation in response to low-intensity light and chloroplast avoidance movement in response to high-intensity light are lacking in the nph1 npl1 double mutant. Our findings therefore indicate that nph1 and npl1 show partially overlapping functions in two different responses, phototropism and chloroplast relocation, in a fluence rate-dependent manner.L ight is an important environmental factor controlling plant growth and development. In particular, wavelengths in UV-A (320-390 nm) and blue (390-500 nm) regions of the electromagnetic spectrum act to regulate a range of different plant responses. These processes include de-etiolation, photoentrainment of the circadian clock, floral initiation, phototropic curvature, chloroplast relocation, and stomatal opening (1-3). Much of our understanding of blue light perception in higher plants has come from the isolation of blue-light-response mutants of Arabidopsis thaliana. Indeed, molecular genetic studies have shown that the effects of blue light on plant development are mediated by at least four different blue-light receptors in Arabidopsis: cryptochrome 1 (cry1), cryptochrome 2 (cry2), phototropin (nph1, for non-phototropic hypocotyl 1), and the npl1 (nph1-like 1) protein.The phototropin photoreceptor, nph1, mediates both root and hypocotyl phototropism in response to low-fluence-rate unilateral blue light (Ͻ1 mol⅐m Ϫ2 ⅐s Ϫ1 ) (4, 5). Nph1 is a 120-kDa plasma-membrane-associated protein that contains a serine͞ threonine kinase domain located within its C terminus. Furthermore, the N-terminal region of nph1 contains a repeated motif of 110 aa, designated LOV1 and LOV2, that belong to the PAS domain (found in PER, ARNT, and SIM proteins) superfamil...
We performed threefold shotgun sequencing of the silkworm (Bombyx mori) genome to obtain a draft sequence and establish a basic resource for comprehensive genome analysis. By using the newly developed RAMEN assembler, the sequence data derived from whole-genome shotgun (WGS) sequencing were assembled into 49,345 scaffolds that span a total length of 514 Mb including gaps and 387 Mb without gaps. Because the genome size of the silkworm is estimated to be 530 Mb, almost 97% of the genome has been organized in scaffolds, of which 75% has been sequenced. By carrying out a BLAST search for 50 characteristic Bombyx genes and 11,202 non-redundant expressed sequence tags (ESTs) in a Bombyx EST database against the WGS sequence data, we evaluated the validity of the sequence for elucidating the majority of silkworm genes. Analysis of the WGS data revealed that the silkworm genome contains many repetitive sequences with an average length of <500 bp. These repetitive sequences appear to have been derived from truncated transposons, which are interspersed at 2.5- to 3-kb intervals throughout the genome. This pattern suggests that silkworm may have an active mechanism that promotes removal of transposons from the genome. We also found evidence for insertions of mitochondrial DNA fragments at 9 sites. A search for Bombyx orthologs to Drosophila genes controlling sex determination in the WGS data revealed 11 Bombyx genes and suggested that the sex-determining systems differ profoundly between the two species.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.