The Hippo pathway senses cell density information to control tissue growth by regulating the localization of the transcriptional regulators TAZ and YAP (TAZ/YAP). TAZ/YAP also regulate TGF-β-SMAD signaling, but whether this role is linked to cell density sensing is unknown. Here we demonstrate that TAZ/YAP dictate the localization of active SMAD complexes in response to cell density-mediated formation of polarity complexes. In high-density cell cultures, the Hippo pathway drives cytoplasmic localization of TAZ/YAP, which sequesters SMAD complexes, thereby suppressing TGF-β signaling. We show that during mouse embryogenesis, this is reflected by differences in TAZ/YAP localization, which define regions of active SMAD2/3 complexes. Interfering with TAZ/YAP phosphorylation drives nuclear accumulation of TAZ/YAP and SMAD2/3. Furthermore, we demonstrate that the Crumbs polarity complex interacts with TAZ/YAP, which relays cell density information by promoting TAZ/YAP phosphorylation, cytoplasmic retention, and suppressed TGF-β signaling. Accordingly, disruption of the Crumbs complex enhances TGF-β signaling and predisposes cells to TGF-β-mediated epithelial-to-mesenchymal transitions.
Selective autophagy involves the recognition and targeting of specific cargo, such as damaged organelles, misfolded proteins, or invading pathogens for lysosomal destruction1–4. Yeast genetic screens have identified proteins required for different forms of selective autophagy, including cytoplasm-to-vacuole targeting, pexophagy, and mitophagy, and mammalian genetic screens have identified proteins required for autophagy regulation5. However, there have been no systematic approaches to identify molecular determinants of selective autophagy in mammalian cells. To identify mammalian genes required for selective autophagy, we performed a high-content, image-based, genome-wide siRNA screen to detect genes required for the colocalization of Sindbis virus capsid protein with autophagolysosomes. We identified 141 candidate genes required for viral autophagy, which were enriched for cellular pathways related to mRNA processing, interferon signaling, vesicle trafficking, cytoskeletal motor function, and metabolism. Ninety-six of these genes were also required for Parkin-mediated mitophagy, indicating that common molecular determinants may be involved in autophagic targeting of viral nucleocapsids and autophagic targeting of damaged mitochondria. Murine embryonic fibroblasts lacking one of these gene products, the C2-domain containing protein, Smurf1, are deficient in the autophagosomal targeting of Sindbis and herpes simplex viruses and in the clearance of damaged mitochondria. Moreover, Smurf1-deficient mice display an accumulation of damaged mitochondria in heart, brain, and liver. Thus, our study identifies candidate determinants of selective autophagy, and defines Smurf1 as a newly recognized mediator of both viral autophagy and mitophagy.
Like many organs, the kidney stiffens after injury, a process that is increasingly recognized as an important driver of fibrogenesis. Yes-associated protein (YAP) and transcriptional coactivator with PDZ-binding motif (TAZ) are related mechanosensory proteins that bind to Smad transcription factors, the canonical mediators of profibrotic TGF-b responses. Here, we investigated the role of YAP/TAZ in the matrix stiffness dependence of fibroblast responses to TGF-b. In contrast to growth on a stiff surface, fibroblast growth on a soft matrix led to YAP/TAZ sequestration in the cytosol and impaired TGF-b-induced Smad2/3 nuclear accumulation and transcriptional activity. YAP knockdown or treatment with verteporfin, a drug that was recently identified as a potent YAP inhibitor, elicited similar changes. Furthermore, verteporfin reduced YAP/TAZ levels and decreased the total cellular levels of Smad2/3 after TGF-b stimulation. Verteporfin treatment of mice subjected to unilateral ureteral obstruction similarly reduced YAP/TAZ levels and nuclear Smad accumulation in the kidney, and attenuated renal fibrosis. Our data suggest that organ stiffening cooperates with TGF-b to induce fibrosis in a YAP/TAZ-and Smad2/3-dependent manner. Interference with this YAP/TAZ and TGF-b/Smad crosstalk likely underlies the antifibrotic activity of verteporfin. Finally, through repurposing of a clinically used drug, we illustrate the therapeutic potential of a novel mechanointerference strategy that blocks TGF-b signaling and renal fibrogenesis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.