Somatic cells can be reprogrammed to induced pluripotent stem cells (iPSCs) by expression of defined embryonic factors. However, little is known of the molecular mechanisms underlying the reprogramming process. Here we explore somatic cell reprogramming by exploiting a secondary mouse embryonic fibroblast model that forms iPSCs with high efficiency upon inducible expression of Oct4, Klf4, c-Myc, and Sox2. Temporal analysis of gene expression revealed that reprogramming is a multistep process that is characterized by initiation, maturation, and stabilization phases. Functional analysis by systematic RNAi screening further uncovered a key role for BMP signaling and the induction of mesenchymal-to-epithelial transition (MET) during the initiation phase. We show that this is linked to BMP-dependent induction of miR-205 and the miR-200 family of microRNAs that are key regulators of MET. These studies thus define a multistep mechanism that incorporates a BMP-miRNA-MET axis during somatic cell reprogramming. PAPERCLIP:
The Hippo pathway senses cell density information to control tissue growth by regulating the localization of the transcriptional regulators TAZ and YAP (TAZ/YAP). TAZ/YAP also regulate TGF-β-SMAD signaling, but whether this role is linked to cell density sensing is unknown. Here we demonstrate that TAZ/YAP dictate the localization of active SMAD complexes in response to cell density-mediated formation of polarity complexes. In high-density cell cultures, the Hippo pathway drives cytoplasmic localization of TAZ/YAP, which sequesters SMAD complexes, thereby suppressing TGF-β signaling. We show that during mouse embryogenesis, this is reflected by differences in TAZ/YAP localization, which define regions of active SMAD2/3 complexes. Interfering with TAZ/YAP phosphorylation drives nuclear accumulation of TAZ/YAP and SMAD2/3. Furthermore, we demonstrate that the Crumbs polarity complex interacts with TAZ/YAP, which relays cell density information by promoting TAZ/YAP phosphorylation, cytoplasmic retention, and suppressed TGF-β signaling. Accordingly, disruption of the Crumbs complex enhances TGF-β signaling and predisposes cells to TGF-β-mediated epithelial-to-mesenchymal transitions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.