The success of cancer gene therapy is likely to require the targeting of multiple antitumor mechanisms. One strategy involves the use of attenuated, replication-competent virus vectors, such as herpes simplex virus type 1 (HSV-1) mutant G207, which is able to replicate in human tumor cells with resultant cell death and tumor growth inhibition, yet is nonpathogenic in normal tissue. In this study, we demonstrate that infection of established tumors with G207 also induces a highly specific systemic anti-tumor immune response. In a syngeneic, bilateral established subcutaneous tumor model, with mouse CT26 colorectal carcinoma cells in BALB/c mice or M3 melanoma cells in DBA/2 mice, unilateral intratumoral inoculation with G207 caused a significant reduction in the growth of both the inoculated and contralateral noninoculated tumors. This elicited anti-tumor response is dependent on viral infection of the tumor, as intradermal inoculation of G207 in BALB/c mice had no effect on CT26 tumor growth. Treatment of subcutaneous CT26 tumors by intratumoral inoculation of G207 induced a tumor-specific T cell response. CD8+ cytotoxic T lymphocyte (CTL) activity was generated that recognized a dominant "tumor-specific" major histocompatibility complex (MHC) class I-restricted epitope (AH1) from CT26 cells. In immune-competent animals, G207 is acting as an in situ tumor vaccine. Therefore, intratumoral G207 inoculation is able to inhibit tumor growth both by local cytotoxic viral replication in tumor cells and induction of a systemic anti-tumor immune response.
Tumor cells arising from a particular tissue may exhibit the same gene expression patterns as their precursor cells. To test this proposition, we have analyzed the expression of a neural RNA-binding protein, Musashi1, in primary human central nervous system (CNS) tumors. In rodents, Musashi1 is expressed predominantly in proliferating multipotent neural precursor cells, but not in newly generated postmitotic neurons. The expression of Musashi1 is downregulated with the successive progression of neurogenesis. In normal adult human tissues, we detected low levels of Musashi1 expression in brain and testis by RT-PCR analysis. In an RNA panel of 32 cancer tissues and cell lines, elevated expression of Musashi1 was seen in all five malignant gliomas studied, in contrast to the slight expression seen in other tumor cells, including those in several melanomas and a prostate cancer. Western blot analysis showed strong Musashi1 expression in malignant gliomas compared with nonneoplastic brain tissue. Glioblastomas, the most malignant form of glioma, showed higher Musashi1 expression than less malignant gliomas by immunohistochemical analysis. Tumors with strong Musashi1 expression tended to have high proliferative activity. Thus, the expression of Musashi1 correlated with the grade of the malignancy and proliferative activity in gliomas. These results suggest that primary CNS tumors may share gene expression patterns with primitive, undifferentiated CNS cells and that Musashi1 may be a useful marker for the diagnosis of CNS tumors.
This study investigated the associations between the intensity of mobile phone use and health-related lifestyle. For 275 university students, we evaluated health-related lifestyle using the Health Practice Index (HPI; Hagihara & Morimoto, 1991; Kusaka, Kondou, & Morimoto, 1992) and analyzed responses to a questionnaire (MPDQ; Toda, Monden, Kubo, & Morimoto, 2004) designed, with a self-rating scale, to gauge mobile phone dependence. For males, there was a significant relationship between smoking habits and mobile phone dependence. We also found that male respondents with low HPI scores were significantly higher for mobile phone dependence. These findings suggest that, particularly for males, the intensity of mobile phone use may be related to healthy lifestyle.
SummaryIn a previous study, we showed that murine dendritic cells (DCs) can increase the number of neural stem/progenitor cells (NSPCs) in vitro and in vivo. In the present study, we identified macrophage migration inhibitory factor (MIF) as a novel factor that can support the proliferation and/or survival of NSPCs in vitro. MIF is secreted by DCs and NSPCs, and its function in the normal brain remains largely unknown. It was previously shown that in macrophages, MIF binds to a CD74-CD44 complex. In the present study, we observed the expression of MIF receptors in mouse ganglionic-eminence-derived neurospheres using flow cytometry in vitro. We also found CD74 expression in the ganglionic eminence of E14 mouse brains, suggesting that MIF plays a physiological role in vivo. MIF increased the number of primary and secondary neurospheres. By contrast, retrovirally expressed MIF shRNA and MIF inhibitor (ISO-1) suppressed primary and secondary neurosphere formation, as well as cell proliferation. In the neurospheres, MIF knockdown by shRNA increased caspase 3/7 activity, and MIF increased the phosphorylation of Akt, Erk, AMPK and Stat3 (Ser727), as well as expression of Hes3 and Egfr, the products of which are known to support cell survival, proliferation and/or maintenance of NSPCs. MIF also acted as a chemoattractant for NSPCs. These results show that MIF can induce NSPC proliferation and maintenance by multiple signaling pathways acting synergistically, and it may be a potential therapeutic factor, capable of activating NSPC, for the treatment of degenerative brain disorders.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.