Disrupted-In-Schizophrenia 1 (DISC1) is a promising candidate gene for susceptibility to psychiatric disorders, including schizophrenia. DISC1 appears to be involved in neurogenesis, neuronal migration, axon/dendrite formation and synapse formation; during these processes, DISC1 acts as a scaffold protein by interacting with various partners. However, the lack of Disc1 knockout mice and a well-characterized antibody to DISC1 has made it difficult to determine the exact role of DISC1 in vivo. In this study, we generated mice lacking exons 2 and 3 of the Disc1 gene and prepared specific antibodies to the N- and C-termini of DISC1. The Disc1 mutant mice are viable and fertile, and no gross phenotypes, such as disorganization of the brain's cytoarchitecture, were observed. Western blot analysis revealed that the DISC1-specific antibodies recognize a protein with an apparent molecular mass of ~100 kDa in brain extracts from wild-type mice but not in brain extracts from DISC1 mutant mice. Immunochemical studies demonstrated that DISC1 is mainly localized to the vicinity of the Golgi apparatus in hippocampal neurons and astrocytes. A deficiency of full-length Disc1 induced a threshold shift in the induction of long-term potentiation in the dentate gyrus. The Disc1 mutant mice displayed abnormal emotional behavior as assessed by the elevated plus-maze and cliff-avoidance tests, thereby suggesting that a deficiency of full-length DISC1 may result in lower anxiety and/or higher impulsivity. Based on these results, we suggest that full-length Disc1-deficient mice and DISC1-specific antibodies are powerful tools for dissecting the pathophysiological functions of DISC1.
Tumor cells arising from a particular tissue may exhibit the same gene expression patterns as their precursor cells. To test this proposition, we have analyzed the expression of a neural RNA-binding protein, Musashi1, in primary human central nervous system (CNS) tumors. In rodents, Musashi1 is expressed predominantly in proliferating multipotent neural precursor cells, but not in newly generated postmitotic neurons. The expression of Musashi1 is downregulated with the successive progression of neurogenesis. In normal adult human tissues, we detected low levels of Musashi1 expression in brain and testis by RT-PCR analysis. In an RNA panel of 32 cancer tissues and cell lines, elevated expression of Musashi1 was seen in all five malignant gliomas studied, in contrast to the slight expression seen in other tumor cells, including those in several melanomas and a prostate cancer. Western blot analysis showed strong Musashi1 expression in malignant gliomas compared with nonneoplastic brain tissue. Glioblastomas, the most malignant form of glioma, showed higher Musashi1 expression than less malignant gliomas by immunohistochemical analysis. Tumors with strong Musashi1 expression tended to have high proliferative activity. Thus, the expression of Musashi1 correlated with the grade of the malignancy and proliferative activity in gliomas. These results suggest that primary CNS tumors may share gene expression patterns with primitive, undifferentiated CNS cells and that Musashi1 may be a useful marker for the diagnosis of CNS tumors.
The schizophrenia susceptibility gene dystrobrevin-binding protein 1 (DTNBP1) encodes dysbindin, which along with its binding partner Muted is an essential component of the biogenesis of lysosome-related organelles complex 1 (BLOC-1). Dysbindin expression is reduced in schizophrenic brain tissue, but the molecular mechanisms by which this contributes to pathogenesis and symptomatology are unknown. We studied the effects of transfection of DTNBP1 siRNA on cell surface levels of dopamine D 2 receptor (DRD2) in human SH-SY5Y neuroblastoma cells and in rat primary cortical neurons. DTNBP1 siRNA decreased dysbindin protein, increased cell surface DRD2 and blocked dopamine-induced DRD2 internalization. MUTED siRNA produced similar effects. In contrast, decreased dysbindin did not change dopamine D 1 receptor (DRD1) levels, or its basal or dopamine-induced internalization. The DRD2 agonist quinpirole reduced phosphorylation of CREB (cAMP response element-binding protein) in dysbindin downregulated cells, demonstrating enhanced intracellular signaling caused by the upregulation of DRD2. This is the first demonstration of a schizophrenia susceptibility gene exerting a functional effect on DRD2 signaling, a pathway that has long been implicated in the illness. We propose a molecular mechanism for pathogenesis in which risk alleles in DTNBP1, or other factors that also downregulate dysbindin, compromise the ability of BLOC-1 to traffic DRD2 toward degradation, but has little effect on DRD1 trafficking. Impaired trafficking of DRD2 decreases dopamine-induced internalization, and with more receptors retained on the cell surface, dopamine stimulation produces excess intracellular signaling. Such an increase in DRD2 signaling relative to DRD1 would contribute to the imbalances in dopaminergic neurotransmission characteristic of schizophrenia.
Disrupted-in-schizophrenia 1 (DISC1) is a susceptibility gene for major psychiatric disorders, including schizophrenia. DISC1 has been implicated in neurodevelopment in relation to scaffolding signal complexes. Here we used proteomic analysis to screen for DISC1 interactors and identified several RNA-binding proteins, such as hematopoietic zinc finger (HZF), that act as components of RNA-transporting granules. HZF participates in the mRNA localization of inositol-1,4,5-trisphosphate receptor type 1 (ITPR1), which plays a key role in synaptic plasticity. DISC1 colocalizes with HZF and ITPR1 mRNA in hippocampal dendrites and directly associates with neuronal mRNAs, including ITPR1 mRNA. The binding potential of DISC1 for ITPR1 mRNA is facilitated by HZF. Studies of Disc1-knockout mice have revealed that DISC1 regulates the dendritic transport of Itpr1 mRNA by directly interacting with its mRNA. The DISC1-mediated mRNA regulation is involved in synaptic plasticity. We show that DISC1 binds ITPR1 mRNA with HZF, thereby regulating its dendritic transport for synaptic plasticity.
To identify therapeutic molecular targets for glioma, we performed modified serological identification of antigens by recombinant complementary DNA (cDNA) expression cloning using sera from a mouse glioma model. Two clones, kinesin family member 23 (Kif23) and structural maintenance of chromosomes 4 (Smc4), were identified as antigens through immunological reaction with sera from mice harboring synergic GL261 mouse glioma and intratumoral inoculation with a mutant herpes simplex virus. The human Kif23 homolog KIF23 is a nuclear protein that localizes to the interzone of mitotic spindles, acting as a plus-end-directed motor enzyme that moves antiparallel microtubules in vitro. Expression analysis revealed a higher level of KIF23 expression in glioma tissues than in normal brain tissue. The introduction of small interfering RNA (siRNA) targeting KIF23 into two different glioma cell lines, U87MG and SF126, downregulated KIF23 expression, which significantly suppressed glioma cell proliferation in vitro. KIF23 siRNA-treated glioma cells exhibited larger cell bodies with two or more nuclei compared with control cells. In vivo analysis using mouse xenograft showed that KIF23 siRNA/DNA chimera-treated tumors were significantly smaller than tumors treated with control siRNA/DNA chimera. Taken together, our results indicate that downregulation of KIF23 decreases proliferation of glioma cells and that KIF23 may be a novel therapeutic target in malignant glioma.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.